JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON w-NOETHERIAN RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON w-NOETHERIAN RINGS
Xing, Shiqi; Wang, Fanggui;
  PDF(new window)
 Abstract
Let R be a commutative ring. An R-module M is called a w-Noetherian module if every submodule of M is of w-finite type. R is called a w-Noetherian ring if R as an R-module is a w-Noetherian module. In this paper, we present an exact version of the Eakin-Nagata Theorem on w-Noetherian rings. To do this, we prove the Formanek Theorem for w-Noetherian rings. Further, we point out by an example that the condition () in the Chung-Ha-Kim version of the Eakin-Nagata Theorem on SM domains is essential.
 Keywords
w-moudle;w-finite type;w-Noetherian module;w-Noetherianring;
 Language
English
 Cited by
1.
Overrings of Prüfer v-multiplication domains, Journal of Algebra and Its Applications, 2017, 16, 08, 1750147  crossref(new windwow)
 References
1.
D. D. Anderson and S. J. Cook, Two star operations and their induced lattices, Comm. Algebra 29 (2000), no. 5, 2461-2475.

2.
G. W. Chang and M. Zafrullah, The w-integral closure of integral domains, J. Algebra 295 (2006), no. 1, 195-210. crossref(new window)

3.
W. Chung, J. Ha, and H. Kim, Some remarks on strong Mori domains, Houston J. Math. 38 (2012), no. 4, 1051-1059.

4.
P. M. Eakin, The converse to a well known theorem on Noetherian rings, Math. Ann. 177 (1968), 278-282. crossref(new window)

5.
E. Formanek, Die statze von Bertini fur lokale Ringe, Math. Ann. 229 (1977), 97-111. crossref(new window)

6.
H. Kim, E. S. Kim, and Y. S. Park, Injective modules over strong Mori domains, Houston J. Math. 34 (2008), no. 2, 349-360.

7.
M. Nagata, A type of subrings of a Noetherian ring, J. Math. Kyoto Univ. 8 (1968), 465-467.

8.
M. H. Park, Groups rings and semigroup rings over strong Mori domains, J. Pure Appl. Algebra 163 (2001), no. 3, 301-318. crossref(new window)

9.
M. H. Park, On overrings of Strong Mori domains, J. Pure Appl. Algebra 172 (2002), no. 1, 79-85. crossref(new window)

10.
F. G. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1-9.

11.
F. G. Wang, and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. crossref(new window)

12.
F. G. Wang, and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165. crossref(new window)

13.
F. G. Wang, J. Zhang, Injective modules over w-Noetherian rings, Acta math. Sinica (Chin. Ser.) 53 (2010), no. 6, 1119-1130.

14.
L. Xi, F. G. Wang, and Y. Tian, On w-linked overrings, J. Math. Res. Exposition 31 (2011), 337-346.

15.
H. Y. Yin, F. G. Wang, X. S. Zhu, and Y. H. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 146-151.