JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MODULES SATISFYING CERTAIN CHAIN CONDITIONS AND THEIR ENDOMORPHISMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MODULES SATISFYING CERTAIN CHAIN CONDITIONS AND THEIR ENDOMORPHISMS
Wang, Fanggui; Kim, Hwankoo;
  PDF(new window)
 Abstract
In this paper, we characterize w-Noetherian modules in terms of polynomial modules and w-Nagata modules. Then it is shown that for a finite type w-module M, every w-epimorphism of M onto itself is an isomorphism. We also define and study the concepts of w-Artinian modules and w-simple modules. By using these concepts, it is shown that for a w-Artinian module M, every w-monomorphism of M onto itself is an isomorphism and that for a w-simple module M, is a division ring.
 Keywords
GV-torsion-free;w-module;w-Noetherian module;w-simple module;w-Artinian module;
 Language
English
 Cited by
 References
1.
N. Bourbaki, Algebre. Chapitre 8: Modules et anneaux semi-simples, Actualites Sci. Indust., no. 1261, Hermann, Paris, 1958.

2.
G. W. Chang, Strong Mori modules over an integral domain, Bull. Korean Math. Soc. 50 (2013), no. 6, 1905-1914. crossref(new window)

3.
M. Orzech, Onto endomorphisms are isomorphisms, Amer. Math. Monthly 78 (1971), 357-361. crossref(new window)

4.
J. R. Strooker, Lifting projectives, Nagoya Math. J. 27 (1966), 747-751.

5.
W. V. Vasconcelos, On local and stable cancellation, An. Acad. Brasil. Ci. 37 (1965), 389-393.

6.
W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512. crossref(new window)

7.
W. V. Vasconcelos, Injective endormorphisms of finitely generated modules, Proc. Amer. Math. Soc. 25 (1970), 900-901.

8.
W. V. Vasconcelos, The Rings of Dimension Two, Lecture Notes in Pure and. Applied Mathematics 22, Dekker, New York, 1976.

9.
F. G. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), no. 1, 1-9.

10.
F. G. Wang and H. Kim, Two generalizations of projective modules and their applica-tions, to appear in J. Pure Appl. Algebra.

11.
F. G. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. crossref(new window)

12.
F. G. Wang and J. Zhang, Injective modules over w-Noetherian rings. Acta Math. Sinica 53 (2010), no 6, 1119-1130.

13.
L. Xie, F. G. Wang, and Y Tian, On w-linked overrings, J. Math. Res. Exposition 53 (2011), no. 2, 1119-1130.

14.
H. Y. Yin, F. G. Wang, X. S. Zhu, and Y. H. Chen, w-Modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. crossref(new window)

15.
J. Zhang, F. G. Wang, and H. Kim, Injective modules over w-Noetherian rings. II, J. Korean Math. Soc. 50 (2013), no. 5, 1051-1066. crossref(new window)