JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON ACTION OF LAU ALGEBRAS ON VON NEUMANN ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON ACTION OF LAU ALGEBRAS ON VON NEUMANN ALGEBRAS
Mohammad, Ramezanpour;
  PDF(new window)
 Abstract
Let be a von Neumann algebraic locally compact quantum group, in the sense of Kustermans and Vaes. In this paper, as a consequence of a notion of amenability for actions of Lau algebras, we show that , the dual of , is co-amenable if and only if there is a state which is invariant under a left module action of on . This is the quantum group version of a result by Stokke [17]. We also characterize amenable action of Lau algebras by several properties such as fixed point property. This yields in particular, a fixed point characterization of amenable groups and H-amenable representation of groups.
 Keywords
Hopf von Neumann algebra;locally compact quantum group;Lau algebra;unitary representation;amenability;
 Language
English
 Cited by
 References
1.
E. Bedos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), no. 8, 865-884. crossref(new window)

2.
M. E. B. Bekka, Amenable unitary representations of locally compact groups, Invent. Math. 100 (2003), no. 2, 383-401.

3.
P. Eymard, Lalgebra de Fourier dun groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.

4.
Z. Hu, M. Neufang, and Z.-J. Ruan, Multipliers on a new class of Banach algebras, locally compact quantum groups, and topological centres, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 429-458. crossref(new window)

5.
J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Ec. Norm. Super (4) 33 (2000), no. 6, 837-934.

6.
J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), no. 1, 68-92.

7.
A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), no. 3, 161-175.

8.
A. T.-M. Lau and A. L. T. Paterson, Group amenability properties for von Neumann algebras, Indiana Univ. Math. J. 55 (2006), no. 4, 1363-1388. crossref(new window)

9.
H. Leptin, Sur lalgebre de Fourier dun groupe localement compact, C. R. Math. Acad. Sci. Paris 266 (1968), 1180-1182.

10.
G. J. Murphy, C*-algebras and Operator Theory, Academic Press, 1990.

11.
I. Namioka, Folner's conditions for amenable semi-groups, Math. Scand. 15 (1964), 18-28.

12.
R. Nasr-Isfahani, Fixed point characterization of left amenable Lau algebras, Int. J. Math. Math. Sci. 2004 (2004), no. 61-64, 3333-3338. crossref(new window)

13.
M. Ramezanpour and H. R. E. Vishki, Reiter's properties for the actions of locally compact quantum groups on von Neumann algebras, Bull. Iranian Math. Soc. 36 (2010), no. 2, 1-17, 291.

14.
V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin, 2002.

15.
V. Runde, Characterizations of compact and discrete quantum groups through second duals, J. Operator theory 60 (2008), no. 2, 415-428.

16.
R. Stokke, Quasi-central bounded approximate identities in group algebras of locally compact groups, Illinois J. Math. 48 (2004), no. 1, 151-170.

17.
R. Stokke, Amenable representations and coefficient subspaces of Fourier-Stieltjes alge-bras, Math. Scand. 98 (2006), no. 2, 182-200.

18.
M. Takesaki, Theory of Operator Algebras. I, II, Ency. Math. Applic. 124, 125, Springer Verlag, Berlin, 2002.

19.
R. Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), no. 4, 949-964. crossref(new window)

20.
A. Van Daele, Locally compact quantum groups. A von Neumann algebra approach, ArXiv:math.OA/0602212.