LIE TRIPLE DERIVATIONS ON FACTOR VON NEUMANN ALGEBRAS Liu, Lei;
Abstract
Let be a factor von Neumann algebra with dimension greater than 1. We prove that if a linear map satisfies for any with ab = 0 (resp. ab = P, where P is a fixed nontrivial projection of ), then there exist an operator and a linear map vanishing at every second commutator [[a, b], c] with ab = 0 (resp. ab = P) such that for any .
Keywords
Lie derivations;Lie triple derivations;factor von Neumann algebras;
LIE -HIGHER DERIVATIONS AND LIE -HIGHER DERIVABLE MAPPINGS, Bulletin of the Australian Mathematical Society, 2017, 96, 02, 223
References
1.
J. Alaminos, J. Extremera, A. R. Villena, and M. Bresar, Characterizing homomor- phisms and derivations on C*-algebras, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 1, 1-7.
2.
M. Bresar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 1, 9-21.
3.
M. A. Chebotar, W.-F. Ke, and P.-H. Lee, Maps characterized by action on zero products, Pacific J. Math. 216 (2004), no. 2, 217-228.
4.
P. Halmos, A Hilbert Space Problem Book, 2nd edn. Springer-Verlag, NewYork, 1982.
5.
P. Ji, W. Qi, and X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear Multilinear Algebra 61 (2013), no. 3, 417-428.
6.
W. Jing, S. J. Lu, and P. T. Li, Characterisations of derivations on some operator algebras, Bull. Austral. Math. Soc. 66 (2002), no. 2, 227-232.
7.
R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. I, II, Academic Press, New York, 1983; 1986.
8.
F. Lu and W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl. 432 (2009), 89-99.
9.
X. Qi and J. Hou, Characterizations of derivations of Banach space nest algebras: All-derivable points, Linear Algebra Appl. 432 (2010), no. 12, 3183-3200.
10.
X. Qi and J. Hou, Characterization of Lie derivations on prime rings, Comm. Algebra 39 (2011), no. 10, 3824-3835.
11.
S. Sakai, Derivations of W*-algebras. Ann. Math. 83 (1966), 273-279.
12.
J. Zhu and S. Zhao, Characterizations of all-derivable points in nest algebras, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2343-2350.