JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COVARIANT MAPS FOR THE SCHRÖDINGER-WEIL REPRESENTATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COVARIANT MAPS FOR THE SCHRÖDINGER-WEIL REPRESENTATION
Yang, Jae-Hyun;
  PDF(new window)
 Abstract
In this paper, we construct the Schrdinger-Weil representation of the Jacobi group associated with a positive definite symmetric real matrix of degree m and find covariant maps for the Schrdinger-Weil representation.
 Keywords
the Schrdinger representation;the Schrdinger-Weil representation;covariant maps;Jacobi forms;
 Language
English
 Cited by
1.
THETA SUMS OF HIGHER INDEX,;

대한수학회보, 2016. vol.53. 6, pp.1893-1908 crossref(new window)
1.
THETA SUMS OF HIGHER INDEX, Bulletin of the Korean Mathematical Society, 2016, 53, 6, 1893  crossref(new windwow)
 References
1.
R. Berndt and R. Schmidt, Elements of the Representation Theory of the Jacobi Group, Birkhauser, 1998.

2.
M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math., 55, Birkhauser, Boston, Basel and Stuttgart, 1985.

3.
E. Freitag, Siegelsche Modulfunktionen, Grundlehren de mathematischen Wissenschaften 55, Springer-Verlag, Berlin-Heidelberg-New York, 1983.

4.
S. Gelbart, Weil's Representation and the Spectrum of the Metaplectic Group, Lecture Notes in Math. 530, Springer-Verlag, Berlin and New York, 1976.

5.
T. Ibukiyama, On Jacobi forms and Siegel modular forms of half integral weights, Comment. Math. Univ. St. Paul. 41 (1992), no. 2, 109-124.

6.
T. Ikeda, On the lifting of elliptic cusp forms to Siegel cusp forms of degree 2n, Ann. of Math. 154 (2001), no. 3, 641-681. crossref(new window)

7.
M. Itoh, H. Ochiai, and J.-H. Yang, Invariant differential operators on Siegel-Jacobi space, preprint, 2013.

8.
M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1-47. crossref(new window)

9.
G. Lion and M. Vergne, The Weil representation, Maslov index and Theta series, Progress in Math., 6, Birkhauser, Boston, Basel and Stuttgart, 1980.

10.
G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. 55 (1952), 101-139. crossref(new window)

11.
J. Marklof, Pair correlation densities of inhomogeneous quadratic forms, Ann. of Math. 158 (2003), no. 2, 419-471. crossref(new window)

12.
D. Mumford, Tata Lectures on Theta. I, Progress in Math. 28, Boston-Basel-Stuttgart, 1983.

13.
A. Pitale, Jacobi Maass forms, Abh. Math. Sem. Univ. Hamburg 79 (2009), no. 1, 87-111. crossref(new window)

14.
C. L. Siegel, Indefinite quadratische Formen und Funnktionentheorie I and II, Math. Ann. 124 (1951), 17-54 and Math. Ann. 124 (1952), 364-387 crossref(new window)

15.
C. L. Siegel, Gesammelte Abhandlungen, Band III, Springer-Verlag (1966), 105-142 and 154-177

16.
K. Takase, A note on automorphic forms, J. Reine Angew. Math. 409 (1990), 138-171.

17.
K. Takase, On two-fold covering group of Sp(n,R) and automorphic factor of weight 1/2, Comment. Math. Univ. St. Paul. 45 (1996), no. 2, 117-145.

18.
K. Takase, On Siegel modular forms of half-integral weights and Jacobi forms, Trans. Amer. Math. Soc. 351 (1999), no. 2, 735-780. crossref(new window)

19.
A. Weil, Sur certains groupes d'operateurs unitares, Acta Math. 111 (1964), 143-211 crossref(new window)

20.
A. Weil, Collected Papers (1964-1978), Vol. III, Springer-Verlag (1979), 1-69.

21.
J.-H. Yang, Harmonic analysis on the quotient spaces of Heisenberg groups, Nagoya Math. J. 123 (1991), 103-117.

22.
J.-H. Yang, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on automorphic forms and related topics (Seoul, 1993), 33-58, Pyungsan Inst. Math. Sci., Seoul, 1993.

23.
J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135-146. crossref(new window)

24.
J.-H. Yang, Harmonic analysis on the quotient spaces of Heisenberg groups. II, J. Number Theory 49 (1994), no. 1, 63-72. crossref(new window)

25.
J.-H. Yang, Singular Jacobi forms, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2041-2049. crossref(new window)

26.
J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canad. J. Math. 47 (1995), no. 6, 1329-1339. crossref(new window)

27.
J.-H. Yang, A decomposition theorem on differential polynomials of theta functions of high level, Japan. J. Math. (N.S.) 22 (1996), no. 1, 37-49.

28.
J.-H. Yang, Fock representations of the Heisenberg group $H_{\mathbb{R}}^{(g,h)}$, J. Korean Math. Soc. 34 (1997), no. 2, 345-370.

29.
J.-H. Yang, Lattice representations of Heisenberg groups, Math. Ann. 317 (2000), no. 2, 309-323. crossref(new window)

30.
J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (2006), no. 3, 701-712.

31.
J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, J. Number Theory 127 (2007), no. 1, 83-102. crossref(new window)

32.
J.-H. Yang, A partial Cayley transform of Siegel-Jacobi disk, J. Korean Math. Soc. 45 (2008), no. 3, 781-794.

33.
J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chin. Ann. Math. Ser. B 31 (2010), no. 1, 85-100. crossref(new window)

34.
J.-H. Yang, Heisenberg Group, Theta Functions and the Weil Representation, Kyung Moon Sa, Seoul, 2012.

35.
J.-H. Yang, A note on Maass-Jacobi forms II, Kyungpook Math. J. 53 (2013), no. 1, 49-86. crossref(new window)

36.
J.-H. Yang, Y.-H. Yong, S.-N. Huh, J.-H. Shin, and G.-H. Min, Sectional curvatures of the Siegel-Jacobi space, Bull. Korean Math. Soc. 50 (2013), no. 3, 787-799. crossref(new window)

37.
C. Ziegler, Jacobi forms of higher degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224. crossref(new window)