JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SUBSTITUTION OPERATORS IN THE SPACES OF FUNCTIONS OF BOUNDED VARIATION BV2α(I)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SUBSTITUTION OPERATORS IN THE SPACES OF FUNCTIONS OF BOUNDED VARIATION BV2α(I)
Aziz, Wadie; Guerrero, Jose Atilio; Merentes, Nelson;
  PDF(new window)
 Abstract
The space of all the real functions defined on interval , which are of bounded second -variation (in the sense De la Vall Poussin) on I forms a Banach space. In this space we define an operator of substitution H generated by a function , and prove, in particular, that if H maps into itself and is globally Lipschitz or uniformly continuous, then h is an affine function with respect to the second variable.
 Keywords
variation in the sense of De la Valle Poussin;uniformly continuous operator;Nemytskii (substitution) operator;Jensen equation;
 Language
English
 Cited by
 References
1.
A. Acosta, W. Aziz, J. Matkowski, and N. Merentes, Uniformly continuous composition operator in the space of $\varphi$-variation functions in the sense of Riesz, Fasc. Math. 43 (2010), 5-11.

2.
W. Aziz, A. Azocar, J. Guerrero, and N. Merentes, Uniformly continuous composition operator in the space of functions of $\varphi$-variation with weight in the sense of Riesz, Nonlinear Anal. 74 (2011), no. 2, 573-576. crossref(new window)

3.
W. Aziz, J. Guerrero, and N. Merentes, Uniformly continuous set-valued composition operators in the spaces of functions of bounded variation in the sense of Riesz, Bull. Pol. Acad. Sci. Math. 58 (2010), no. 1, 39-45. crossref(new window)

4.
R. Castillo and E. Trousselot, An application of the generalized Maligranda-Orlicz's Lemma, J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article 84, 6 pp.

5.
J. A. Guerrero, H. Leiva, J. Matkowski, and N. Merentes, Uniformly continuous composition operators in the space of bounded $\varphi$-variation functions, Nonlinear Anal. 72 (2010), no. 6, 3119-3123. crossref(new window)

6.
T. Kostrzewski, Globally Lipschitz operators of substitution in Banach space BCI, Sci. Bull. Lodzka Technical Univ. 602, (1993), 17-25.

7.
M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Editors and Silesian University, Warszawa-Krakow-Katowice, 1985.

8.
A. Matkowska, On characterization of Lipschitizian operators of substitution in the class of Holder functions, Sci. Bull. Lodzka Technical Univ. 17 (1984), 81-85.

9.
A. Matkowska, J. Matkowski, and N. Merentes, Remark on globally Lipschitizian composition operators, Demonstratio Math. 28 (1995), no. 1, 171-175.

10.
J. Matkowski, Functional equations and Nemytskii operators, Funkcial. Ekvac. 25 (1982), no. 2, 127-132.

11.
J. Matkowski, Form of Lipschitz operators of substitution in Banach spaces of differentiable functions, Sci. Bull. Lodzka Tech. Univ. 17, (1984), 5-10.

12.
J. Matkowski, Uniformly continuous superposition operators in space of differentiable function and absolutely continuous functions, Internat. Ser. Numer. Math. 157 (2008), 155-166.

13.
J. Matkowski, Uniformly continuous superposition operators in Banach space of Holder functions, J. Math. Anal. Appl. 359 (2009), no. 1, 56-61. crossref(new window)

14.
J. Matkowski, Uniformly continuous superposition operators in the space of bounded variation functions, Math. Nachr. 283 (2010), no. 7, 1060-1064.

15.
J. Matkowski and J. Mis, On a characterization of Lipschitzian operators of substitution in the space BV[a, b], Math. Nachr. 117 (1984), 155-159.

16.
N. Merentes, On a characterization of Lipschitzian operators of substitution in the space of bounded Riesz $\varphi$-variation, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 34 (1991), 139-144.

17.
N. Merentes and S. Rivas, On a characterization of the Lipschitzian composition operators between spaces of functions of bounded p-variation, Czechoslov. Math. J. 45 (1995), no. 4, 43-48.

18.
A. W. Roberts and D. E. Varberg, Convex Functions, New York and London, 1973.

19.
A. M. Russell, Functions of bounded second variation and Stieltjes-type integrals, J. Lond. Math. Soc. (2) 2 (1970), 193-208.

20.
Ch. J. de la Vallee Poussin, Sur la convergence des formules d'interpolation entre ordon ees equidistantes, Acad. Roy. Belge. Bull. Cl. Sci. (6) 4 (1908), 319-410.