JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXISTENCE AND CONCENTRATION RESULTS FOR KIRCHHOFF-TYPE SCHRÖ DINGER SYSTEMS WITH STEEP POTENTIAL WELL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXISTENCE AND CONCENTRATION RESULTS FOR KIRCHHOFF-TYPE SCHRÖ DINGER SYSTEMS WITH STEEP POTENTIAL WELL
Lu, Dengfeng;
  PDF(new window)
 Abstract
In this paper, we consider the following Kirchhoff-type Schrdinger system where and are positive constants for i = 1, 2, > 0 is a parameter, V (x) and W(x) are nonnegative continuous potential functions. By applying the Nehari manifold method and the concentration-compactness principle, we obtain the existence and concentration of ground state solutions when the parameter is sufficiently large.
 Keywords
Kirchhoff-type Schrdinger system;variational method;concentration;steep potential well;
 Language
English
 Cited by
 References
1.
C. O. Alves, F. J. S. A. Correa, and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), no. 1, 85-93. crossref(new window)

2.
T. Bartsch and Z. Q. Wang, Multiple positive solutions for a nonlinear Schrodinger equation, Z. Angew. Math. Phys. 51 (2000), no. 3, 366-384. crossref(new window)

3.
F. Cammaroto and L. Vilasi, Multiple solutions for a Kirchhoff-type problem involving the p(x)-Laplacian operator, Nonlinear Anal. 74 (2011), no. 5, 1841-1852. crossref(new window)

4.
F. Cammaroto and L. Vilasi, On a Schrodinger-Kirchhoff-type equation involving the p(x)-Laplacian, Nonlinear Anal. 81 (2013), 42-53. crossref(new window)

5.
B. T. Cheng and X. Wu, Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal. 71 (2009), no. 10, 4883-4892. crossref(new window)

6.
M. F. Furtado, E. A. B. Silva, and M. S. Xavier, Multiplicity and concentration of solutions for elliptic systems with vanishing potentials, J. Differential Equations 249 (2010), no. 10, 2377-2396. crossref(new window)

7.
X. M. He and W. M. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009), no. 3, 1407-1414. crossref(new window)

8.
X. M. He and W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^3$, J. Differential Equations 252 (2012), no. 2, 1813-1834. crossref(new window)

9.
G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

10.
J. L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partial differential equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), pp. 284-346, North-Holland Math. Stud., 30, North-Holland, Amsterdam-New York, 1978. crossref(new window)

11.
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part I, Ann. Inst. H. Poincare Anal. Non Lineaire 1 (1984), no. 2, 109-145.

12.
W. Liu and X. M. He, Multiplicity of high energy solutions for superlinear Kirchhoff equations, J. Appl. Math. Comput. 39 (2012), no. 1-2, 473-487. crossref(new window)

13.
T. F. Ma and J. E. Munoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16 (2003), no. 2, 243-248. crossref(new window)

14.
A. M. Mao and Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009), no. 3, 1275-1287. crossref(new window)

15.
K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006), no. 1, 246-255. crossref(new window)

16.
J. T. Sun and T. F. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations 256 (2014), no. 4, 1771-1792. crossref(new window)

17.
J. Wang, L. Tian, J. Xu, and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations 253 (2012), no. 7, 2314-2351. crossref(new window)

18.
X. Wu, Existence of nontrivial solutions and high energy solutions for Schrodinger-Kirchhoff-type equations in $R^N$, Nonlinear Anal. Real World Appl. 12 (2011), no. 2, 1278-1287. crossref(new window)

19.
X. Wu, High energy solutions of systems of Kirchhoff-type equations in $R^N$, J. Math. Phys. 53 (2012), no. 6, 063508, 18 pp.

20.
F. Zhou, K. Wu, and X. Wu, High energy solutions of systems of Kirchhoff-type equations on $R^N$, Comput. Math. Appl. 66 (2013), no. 7, 1299-1305. crossref(new window)