JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME REMARKS ON TOTAL CURVATURE OF A MINIMAL GRAPH
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME REMARKS ON TOTAL CURVATURE OF A MINIMAL GRAPH
Ganczar, Andrzej;
  PDF(new window)
 Abstract
In this paper we discuss bounds for the total curvature of nonparametric minimal surfaces by using the properties of planar harmonic mappings.
 Keywords
minimal surface;univalent harmonic mapping;dilatation;Bloch function;
 Language
English
 Cited by
 References
1.
D. Bshouty and A. Weitsman, On the Gauss map of minimal graphs, Complex Var. Theory Appl. 48 (2003), no. 4, 339-346. crossref(new window)

2.
J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I 9 (1984), 3-25.

3.
F. Colonna, The Bloch constant of bounded analytic functions, J. London Math. Soc. 36 (1987), no. 1, 95-101.

4.
U. Dierkes, S. Hildebrandt, A. Kuster, and O. Wohlrab, Minimal Surfaces I. Boundary Value Problems, Grundlehren der Math. Wiss. 295, Springer-Verlag, 1992.

5.
P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics vol. 156, Cambridge University Press, 2004.

6.
G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, GITTL, Moscow, 1952; English transl., Transl. Math. Monographs, vol. 26, Amer. Soc. Providence, R.I., 1969.

7.
E. Heinz, Uber die Losungen der Minimalflachengleichung, Nachr. Akad. Wiss. Gttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt. (1952), 51-56.

8.
E. Reich, An inequality for subordinate analytic functions, Pacific J. Math. 4 (1954), no. 2, 259-274. crossref(new window)

9.
S. Yamashita, Spherical derivative of meromorphic function with image of finite spherical area, J. Inequal. Appl. 5 (2000), no. 2, 191-199.