JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN ANALOGUE OF THE HILTON-MILNER THEOREM FOR WEAK COMPOSITIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AN ANALOGUE OF THE HILTON-MILNER THEOREM FOR WEAK COMPOSITIONS
Ku, Cheng Yeaw; Wong, Kok Bin;
  PDF(new window)
 Abstract
Let be the set of non-negative integers, and let P(n, l) denote the set of all weak compositions of n with l parts, i.e., $P(n,l)
 Keywords
cross-intersecting family;Hilton-Milner;-Ko-Rado;weak compositions;
 Language
English
 Cited by
1.
A non-trivial intersection theorem for permutations with fixed number of cycles, Discrete Mathematics, 2016, 339, 2, 646  crossref(new windwow)
2.
The Hilton–Milner theorem for the distance-regular graphs of bilinear forms, Linear Algebra and its Applications, 2017, 515, 130  crossref(new windwow)
 References
1.
R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), no. 2, 125-136. crossref(new window)

2.
R. Ahlswede and L. H. Khachatrian, The diametric theorem in Hamming spaces - optimal anticodes, Adv. in Appl. Math. 20 (1998), no. 4, 429-449. crossref(new window)

3.
C. Bey, On cross-intersecting families of sets, Graphs Combin. 21 (2005), no. 2, 161-168. crossref(new window)

4.
P. Borg, Extremal t-intersecting sub-families of hereditary families, J. London Math. Soc. 79 (2009), no. 1, 167-185.

5.
P. Borg, On t-intersecting families of signed sets and permutations, Discrete Math. 309 (2009), no. 10, 3310-3317. crossref(new window)

6.
P. Borg and F. C. Holroyd, The Erdos-Ko-Rado property of various graphs containing singletons, Discrete Math. 309 (2009), no. 9, 2877-2885. crossref(new window)

7.
F. Brunk and S. Huczynska, Some Erdos-Ko-Rado theorems for injections, European J. Combin. 31 (2010), 839-860. crossref(new window)

8.
P. J. Cameron and C. Y. Ku, Intersecting families of permutations, European J. Combin. 24 (2003), no. 7, 881-890. crossref(new window)

9.
A. Chowdhury and B. Patkos, Shadows and intersections in vector spaces, J. Combin. Theory Ser. A 117 (2010), no. 8, 1095-1106. crossref(new window)

10.
M. Deza and P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (1977), no. 3, 352-360. crossref(new window)

11.
D. Ellis, Stability for t-intersecting families of permutations, J. Combin. Theory Ser. A 118 (2011), no. 1, 208-227. crossref(new window)

12.
D. Ellis, E. Friedgut, and H. Pilpel, Intersecting families of permutations, J. Amer. Math. Soc. 24 (2011), no. 3, 649-682. crossref(new window)

13.
K. Engel and P. Frankl, An Erdos-Ko-Rado theorem for integer sequences of given rank, European J. Combin. 7 (1986), no. 3, 215-220. crossref(new window)

14.
P. Erdos, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.

15.
P. Frankl, The Erdos-Ko-Rado theorem is true for n = ckt, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, pp. 365-375, Colloq. Math. Soc. Jnos Bolyai, 18, North-Holland, Amsterdam-New York, 1978.

16.
P. Frankl and Z. Furedi, Nontrivial intersecting families, J. Combin. Theory Ser. A 41 (1986), no. 1, 150-153. crossref(new window)

17.
P. Frankl and N. Tokushige, On r-cross intersecting families of sets, Combin. Probab. Comput. 20 (2011), no. 5, 749-752. crossref(new window)

18.
P. Frankl and R. M. Wilson, The Erdos-Ko-Rado theorem for vector spaces, J. Combin. Theory Ser. A 43 (1986), no. 2, 228-236. crossref(new window)

19.
C. Godsil and K. Meagher, A new proof of the Erdos-Ko-Rado theorem for intersecting families of permutations, European J. Combin. 30 (2009), no. 2, 404-414. crossref(new window)

20.
A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 18 (1967), 369-384.

21.
A. J. W. Hilton and C. L. Spencer, A graph-theoretical generalisation of Berges analogue of the Erdos-Ko-Rado theorem, Trends in Graph Theory, Birkhauser Verlag, Basel, Switzerland (2006), 225-242.

22.
F. C. Holroyd, C. Spencer, and J. Talbot, Compression and Erdos-Ko-Rado graphs, Discrete Math. 293 (2005), no. 1-3, 155-164. crossref(new window)

23.
F. C. Holroyd and J. Talbot, Graphs with the Erdos-Ko-Rado property, Discrete Math. 293 (2005), no. 1-3, 165-176. crossref(new window)

24.
G. Hurlbert and V. Kamat, Erdos-Ko-Rado theorems for chordal graphs and trees, J. Combin. Theory Ser. A 118 (2011), no. 3, 829-841. crossref(new window)

25.
P. Keevash, Shadows and intersections: Stability and new proofs, Adv.Math. 218 (2008), no. 5, 1685-1703. crossref(new window)

26.
C. Y. Ku and I. Leader, An Erdos-Ko-Rado theorem for partial permutations, Discrete Math. 306 (2006), no. 1, 74-86. crossref(new window)

27.
C. Y. Ku and D. Renshaw, Erdos-Ko-Rado theorems for permutations and set partitions, J. Combin. Theory Ser. A 115 (2008), no. 6, 1008-1020. crossref(new window)

28.
C. Y. Ku and K. B. Wong, On cross-intersecting families of set partitions, Electron. J. Combin. 19 (2012), no. 4, 9 pp.

29.
C. Y. Ku and K. B. Wong, On r-cross intersecting families of sets, Far East J. Math. Sci. 75 (2013), 295-300.

30.
C. Y. Ku and K. B. Wong, An analogue of the Erdos-Ko-Rado theorem for weak compositions, Discrete Math. 313 (2013), 2463-2468. crossref(new window)

31.
C. Y. Ku and K. B. Wong, An analogue of Hilton-Milner theorem for set partitions, J. Combin. Theory Ser. A 120 (2013), 1508-1520. crossref(new window)

32.
C. Y. Ku and K. B. Wong, On r-cross t-intersecting families for weak compositions, preprint.

33.
C. Y. Ku and K. B. Wong, An Erdos-Ko-Rado theorem for permutations with fixed number of cycles, Electron. J. Combin. 21 (2014), no. 3, #P3.16.

34.
C. Y. Ku and T. W. H. Wong, Intersecting families in the alternating group and direct product of symmetric groups, Electron. J. Combin. 14 (2007), no. 3, 9 pp.

35.
B. Larose and C. Malvenuto, Stable sets of maximal size in Kneser-type graphs, European J. Combin. 25 (2004), no. 5, 657-673. crossref(new window)

36.
Y.-S. Li and Jun Wang, Erdos-Ko-Rado-type theorems for colored sets, Electron. J. Combin. 14 (2007), no. 1, 9 pp.

37.
M. Matsumoto and N. Tokushige, The exact bound in the Erdos-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), no. 1, 90-97. crossref(new window)

38.
A. Moon, An analogue of the Erdos-Ko-Rado theorem for the Hamming schemes H(n, q), J. Combin. Theory Ser. A 32 (1982), no. 3, 386-390. crossref(new window)

39.
L. Pyber, A new generalization of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), no. 1, 85-90. crossref(new window)

40.
N. Tokushige, A product version of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 118 (2011), no. 5, 1575-1587. crossref(new window)

41.
J. Wang and H. Zhang, Cross-intersecting families and primitivity of symmetric systems, J. Combin. Theory Ser. A 118 (2011), no. 2, 455-462. crossref(new window)

42.
J. Wang and S. J. Zhang, An Erdos-Ko-Rado-type theorem in Coxeter groups, European J. Combin. 29 (2008), no. 5, 1112-1115. crossref(new window)

43.
R. M. Wilson, The exact bound in the Erdos-Ko-Rado theorem, Combinatorica 4 (1984), no. 2-3, 247-257. crossref(new window)

44.
R. Woodroofe, Erdos-Ko-Rado theorems for simplicial complexes, J. Combin. Theory Ser. A 118 (2011), no. 4, 1218-1227. crossref(new window)