A REMARK ON QUASI CONTACT METRIC MANIFOLDS Park, JeongHyeong; Sekigawa, Kouei; Shin, Wonmin;
Abstract
As a natural generalization of the contact metric manifolds, Kim, Park and Sekigawa discussed quasi contact metric manifolds based on the geometry of the corresponding quasi cones. In this paper, we show that a quasi contact metric manifold is a contact manifold.
Curvature identities on contact metric manifolds and their applications,;;;
Advanced Studies in Contemporary Mathematics, 2015. vol.25. 3, pp.423-435
References
1.
D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progress in Math. 203, Birkhauser, Boston, 2002.
2.
S. Dragomir and D. Perrone, Levi harmonic maps of contact Riemannian manifolds, J. Geom. Anal. 24 (2014), no. 3, 1233-1275.
3.
A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. J. 28 (1976), no. 4, 601-612.
4.
A. Gray and L. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58.
5.
J. E. Jin, J. H. Park, and K. Sekigawa, Notes on some classes of 3-dimensional contact metric manifolds, Balkan J. Geom. Appl. 17 (2012), no. 2, 54-65.
6.
J. H. Kim, J. H. Park, and K. Sekigawa, A generalization of contact metric manifolds, Balkan J. Geom. Appl. 19 (2014), no. 2, 94-105.
7.
Z. Olszak, On contact metric manifold, Tohoku Math. J. 31 (1979), no. 2, 247-253.
8.
D. Perrone, Remarks on Levi harmonicity of contact semi-Riemannian manifolds, J. Korean Math. Soc. 51 (2014), no. 5, 881-895.
9.
Y. Tashiro, On contact structure of hypersurfaces in complex manifolds. I, II, Tohoku Math. J. 15 (1963), 62-78; 167-175.