JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A REMARK ON QUASI CONTACT METRIC MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A REMARK ON QUASI CONTACT METRIC MANIFOLDS
Park, JeongHyeong; Sekigawa, Kouei; Shin, Wonmin;
  PDF(new window)
 Abstract
As a natural generalization of the contact metric manifolds, Kim, Park and Sekigawa discussed quasi contact metric manifolds based on the geometry of the corresponding quasi cones. In this paper, we show that a quasi contact metric manifold is a contact manifold.
 Keywords
contact metric manifold;quasi contact metric manifold;
 Language
English
 Cited by
1.
Curvature identities on contact metric manifolds and their applications,;;;

Advanced Studies in Contemporary Mathematics, 2015. vol.25. 3, pp.423-435
 References
1.
D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Second edition, Progress in Math. 203, Birkhauser, Boston, 2002.

2.
S. Dragomir and D. Perrone, Levi harmonic maps of contact Riemannian manifolds, J. Geom. Anal. 24 (2014), no. 3, 1233-1275. crossref(new window)

3.
A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. J. 28 (1976), no. 4, 601-612. crossref(new window)

4.
A. Gray and L. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980), 35-58. crossref(new window)

5.
J. E. Jin, J. H. Park, and K. Sekigawa, Notes on some classes of 3-dimensional contact metric manifolds, Balkan J. Geom. Appl. 17 (2012), no. 2, 54-65.

6.
J. H. Kim, J. H. Park, and K. Sekigawa, A generalization of contact metric manifolds, Balkan J. Geom. Appl. 19 (2014), no. 2, 94-105.

7.
Z. Olszak, On contact metric manifold, Tohoku Math. J. 31 (1979), no. 2, 247-253. crossref(new window)

8.
D. Perrone, Remarks on Levi harmonicity of contact semi-Riemannian manifolds, J. Korean Math. Soc. 51 (2014), no. 5, 881-895. crossref(new window)

9.
Y. Tashiro, On contact structure of hypersurfaces in complex manifolds. I, II, Tohoku Math. J. 15 (1963), 62-78; 167-175. crossref(new window)