THE n-TH TWISTED CHANGHEE POLYNOMIALS AND NUMBERS

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 52, Issue 3, 2015, pp.741-749
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2015.52.3.741

Title & Authors

THE n-TH TWISTED CHANGHEE POLYNOMIALS AND NUMBERS

Rim, Seog-Hoon; Park, Jin-Woo; Pyo, Sung-Soo; Kwon, Jongkyum;

Rim, Seog-Hoon; Park, Jin-Woo; Pyo, Sung-Soo; Kwon, Jongkyum;

Abstract

The Changhee polynomials and numbers are introduced in [6]. Some interesting identities and properties of those polynomials are derived from umbral calculus (see [6]). In this paper, we consider Witt-type formula for the n-th twisted Changhee numbers and polynomials and derive some new interesting identities and properties of those polynomials and numbers from the Witt-type formula which are related to special polynomials.

Keywords

Euler numbers;Changhee numbers;twisted Changhee numbers;

Language

English

Cited by

References

1.

S. Araci and M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. 22 (2012), no. 3, 399-406.

2.

A. Bayad, Modular properties of elliptic Bernoulli and Euler functions, Adv. Stud. Contemp. Math. 20 (2010), no. 3, 389-401.

3.

J. Choi, D. S. Kim, T. Kim, and Y. H. Kim, Some arithmetic identities on Bernoulli and Euler numbers arising from the p-adic integrals on $\mathbb{Z}_p$ , Adv. Stud. Contemp. Math. 22 (2012), no. 2, 239-247.

4.

D. Ding and J. Yang, Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials, Adv. Stud. Contemp. Math. 20 (2010), no. 1, 7-21.

5.

D. S. Kim, T. Kim, Y. H. Kim, and D. V. Dolgy, A note on Eulerian polynomials associated with Bernoulli and Euler numbers and polynomials, Adv. Stud. Contemp. Math. 22 (2012), no. 3, 379-389.

6.

D. S. Kim, T. Kim, and J. J. Seo, A note on Changhee polynomials and numbers, Adv. Studies Theor. Phys. 7 (2013), no. 20, 993-1003.

7.

T. Kim, Non-Archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91-98.

8.

T. Kim, p-adic q-integrals associated with the Changhee-Barnes' q-Bernoulli polynomials, Integral Transforms Spec. Funct. 15 (2004), no. 5, 415-420.

9.

T. Kim, D. S. Kim, T. Mansour, S.-H. Rim, M. and Schork Umbral calculus and Sheffer sequences of polynomials, J. Math. Phys. 54 (2013), no. 8, 083504, 15 pp.

10.

T. Kim and S.-H. Rim, On Changhee-Barnes' q-Euler numbers and polynomials, Adv. Stud. Contemp. Math. 9 (2004), no. 2, 81-86.

11.

T. Kim and S.-H. Rim, New Changhee q-Euler numbers and polynomials associated with p-adic q-integrals, Comput. Math. Appl. 54 (2007), no. 4, 484-489.

12.

Q.-M. Luo, q-analogues of some results for the Apostol-Euler polynomials, Adv. Stud. Contemp. Math. 20 (2010), no. 1, 103-113.

13.

C. S. Ryoo, T. Kim, and R. P. Agarwal, Exploring the multiple Changhee q-Bernoulli polynomials, Int. J. Comput. Math. 82 (2005), no. 4, 483-493.

14.

C. S. Ryoo and H. Song, On the real roots of the Changhee-Barnes' q-Bernoulli polyno-mials, Proceedings of the 15th International Conference of the Jangjeon Mathematical Society, 63-85, Jangjeon Math. Soc., Hapcheon, 2004.

15.

Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications, Russ. J. Math. Phys. 17 (2010), no. 4, 495-508.

16.

Y. Simsek, T. Kim, and I. S. Pyung, Barnes' type multiple Changhee q-zeta functions, Adv. Stud. Contemp. Math. 10 (2005), no. 2, 121-129.