JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON THE COMPLETE MOMENT CONVERGENCE FOR ARRAYS OF B-VALUED RANDOM VARIABLES
Wu, Yongfeng; Song, Mingzhu;
  PDF(new window)
 Abstract
In this article, we discuss the complete moment convergence for arrays of B-valued random variables. We obtain some new results which improve the corresponding ones of Sung and Volodin [17].
 Keywords
complete moment convergence;weighted sums;B-valued random variables;
 Language
English
 Cited by
 References
1.
A. de Acosta, Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Probab. 9 (1981), no. 1, 157-161. crossref(new window)

2.
S. E. Ahmed, R. Giuliano Antonini, and A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving avurage processes, Statist. Probab. Lett. 58 (2002), no. 2, 185-194. crossref(new window)

3.
L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Am. Math. Soc. 120 (1965), 108-123. crossref(new window)

4.
Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sinica 16 (1988), no. 3, 177-201.

5.
A. Gut, Complete convergence for arrays, Period. Math. Hungar. 25 (1992), no. 1, 51-75. crossref(new window)

6.
P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. USA 33 (1947), 25-31. crossref(new window)

7.
T. C. Hu, D. Li, A. Rosalsky, and A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements, Theory Probab. Appl. 47 (2002), no. 3, 455-468.

8.
T. C. Hu, A. Rosalsky, D. Szynal, and A. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochastic Anal. Appl. 17 (1999), no. 6, 963-992. crossref(new window)

9.
T. S. Kim and M. H. Ko, On the complete convergence of moving average process with Banach space valued random elements, J. Theoret. Probab. 21 (2008), no. 2, 431-436. crossref(new window)

10.
T. S. Kim and M. H. Ko, Complete moment convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. 78 (2008), no. 7, 839-846. crossref(new window)

11.
D. Li, M. B. Rao, T. F. Ting, and X. C. Wang, Complete convergence and almost sure convergence of weighted sums of random variables, J. Theoret. Probab. 8 (1995), no. 1, 49-76. crossref(new window)

12.
Y. X. Li and L. X. Zhang, Complete moment convergence of moving-average processes under dependence assumptions, Statist. Probab. Lett. 70 (2004), no. 3, 191-197. crossref(new window)

13.
H. Y. Liang, D. L. Li, and A. Rosalsky, Complete moment and integral convergence for sums of negatively associated random variables, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 3, 419-432. crossref(new window)

14.
D. H. Qiu, T. C. Hu, M. O. Cabrera, and A. Volodin, Complete convergence for weighted sums of arrays of Banach-space-valued random elements, Lith. Math. J. 52 (2012), no. 3, 316-325. crossref(new window)

15.
S. H. Sung, Complete convergence for weighted sums of arrays of rowwise independent B-valued random variables, Stochastic Anal. Appl. 15 (1997), no. 2, 255-267. crossref(new window)

16.
S. H. Sung, Moment inequalities and complete moment convergence, J. Inequal. Appl. 2009 (2009), Article ID 271265, doi:10.1155/2009/271265.

17.
S. H. Sung and A. Volodin, A note on the rate of complete convergence for weighted sums of arrays of Banach space valued random elements, Stochastic Anal. Appl. 29 (2011), no. 2, 282-291. crossref(new window)

18.
D. C. Wang and C. Su, Moment complete convergence for sequences of B-valued iid random elements, Acta Math. Appl. Sin. 27 (2004), no. 3, 440-448.

19.
D. C. Wang and W. Zhao, Moment complete convergence for sums of a sequence of NA random variables, Appl. Math. J. Chinese Univ. Ser. A 21 (2006), no. 4, 445-450.

20.
X. Wang, M. B. Rao, and X. Yang, Convergence rates on strong laws of large numbers for arrays of rowwise independent elements, Stochastic Anal. Appl. 11 (1993), no. 1, 115-132. crossref(new window)

21.
Y. F. Wu, Convergence properties of the maximal partial sums for arrays of rowwise NA random variables, Theory Probab. Appl. 56 (2012), no. 3, 527-535. crossref(new window)

22.
L. X. Zhang, Complete convergence of moving average processes under dependence as-sumptions, Statist. Probab. Lett. 30 (1996), no. 2, 165-170. crossref(new window)