JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXPANDING THE APPLICABILITY OF SECANT METHOD WITH APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXPANDING THE APPLICABILITY OF SECANT METHOD WITH APPLICATIONS
Magrenan, A. Alberto; Argyros, Ioannis K.;
  PDF(new window)
 Abstract
We present new sufficient convergence criteria for the convergence of the secant-method to a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz conditions in the convergence analysis. The new convergence criteria can always be weaker than the corresponding ones in earlier studies. Numerical examples are also provided in this study to solve equations in cases not possible before.
 Keywords
secant method;Banach space;majorizing sequence;divided difference;-derivative;
 Language
English
 Cited by
 References
1.
S. Amat, S. Busquier, and J. M. Gutierrez, On the local convergence of secant-type methods, Int. J. Comput. Math. 81 (2004), no. 9, 1153-1161. crossref(new window)

2.
S. Amat, S. Busquier, and A. A. Magrenan, Reducing chaos and bifurcations in Newtontype methods, Abstr. Appl. Anal. 2013 (2013), Article ID 726701, 10 pages.

3.
S. Amat, S. Busquier, and M. Negra, Adaptive approximation of nonlinear operators, Numer. Funct. Anal. Optim. 25 (2004), no. 5-6, 397-405. crossref(new window)

4.
S. Amat, A. A. Magrenan, and N. Romero, On a two step relaxed Newton-type methods, Appl. Math. Comput. 219 (2013), no. 24, 11341-11347. crossref(new window)

5.
I. K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), no. 2, 374-397. crossref(new window)

6.
I. K. Argyros, New sufficient convergence conditions for the Secant method, Chechoslovak Math. J. 55(130) (2005), no. 1, 175-187. crossref(new window)

7.
I. K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer-Verlag Publ., New-York, 2008.

8.
I. K. Argyros, Weaker conditions for the convergence of Newton's method, J. Complexity 28 (2012), no. 3, 364-387. crossref(new window)

9.
I. K. Argyros, D. Gonzalez, and A. A. Magrenan, A semilocal convergence for a uniparametric family of efficient secant-like methods, J. Function Spaces 2014 (2014), Article ID 467980, 10 pages.

10.
W. E. Bosarge and P. L. Falb, A multipoint method of third order, J. Optimization Theory Appl. 4 (1969), 156-166. crossref(new window)

11.
J. E. Dennis, Toward a unified convergence theory for Newton-like methods, in Nonlinear Functional Anal. and Appl. (Proc. Advanced Sem., Math. Res. Center, Univ. of Wisconsin, Madison, Wis., 1970) pp. 425-472 Academic Press, New York, 1971.

12.
M. Garcia-Olivo, El metodo de Chebyshev para el calculo de las raices de ecuaciones no lineales, (PhD Thesis), Servicio de Publicaciones, Universidad de La Rioja, 2013.

13.
J. M. Gutierrez, A. A. Magrenan, and N. Romero, On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions, Appl. Math. Comput. 221 (2013), 79-88. crossref(new window)

14.
M. A. Hernandez, M. J. Rubio, and J. A. Ezquerro, Secant-like methods for solving nonlinear integral equations of the Hammerstein type, J. Comput. Appl. Math. 115 (2000), 245-254. crossref(new window)

15.
M. A. Hernandez, M. J. Rubio, and J. A. Ezquerro, Solving a special case of conservative problems by Secant-like method, Appl. Math. Comput. 169 (2005), no. 2, 926-942. crossref(new window)

16.
L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.

17.
P. Laasonen, Ein uberquadratisch konvergenter iterativer algorithmus, Ann. Acad. Sci. Fenn. Ser I 450 (1969), 1-10.

18.
A. A. Magrenan, Estudio de la dinamica del metodo de Newton amortiguado, PhD Thesis, Servicio de Publicaciones, Universidad de La Rioja, 2013.

19.
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

20.
A. M. Ostrowski, Solution of equations in Euclidian and Banach Spaces, Academic Press, New York, 1972.

21.
F. A. Potra, An error analysis for the secant method, Numer. Math. 38 (1982), no. 3, 427-445. crossref(new window)

22.
F. A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), 71-84.

23.
F. A. Potra and V. Ptak, Nondiscrete Induction and Iterative Processes, Pitman, New York, 1984.

24.
J. W. Schmidt, Untere Fehlerschranken fur Regula-Falsi Verhafren, Period. Math. Hungar. 9 (1978), no. 3, 241-247. crossref(new window)

25.
A. S. Sergeev, The method of Chords, Sibirsk, Mat. Z. 11 (1961), 282-289.

26.
S. Ulm, A majorant principle and the method of secants, Izv. Akad. Nauk Eston. SSR, Ser. Fiz.-Mat. 13 (1964), 217-227.

27.
T. Yamamoto, A convergence theorem for Newton-like methods in Banach spaces, Numer. Math. 51 (1987), no. 5, 545-557. crossref(new window)

28.
M. A. Wolfe, Extended iterative methods for the solution of operator equations, Numer. Math. 31 (1978), no. 2, 153-174. crossref(new window)