JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN EFFICIENT CONSTRUCTION OF SELF-DUAL CODES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AN EFFICIENT CONSTRUCTION OF SELF-DUAL CODES
Kim, Jon-Lark; Lee, Yoonjin;
  PDF(new window)
 Abstract
Self-dual codes have been actively studied because of their connections with other mathematical areas including t-designs, invariant theory, group theory, lattices, and modular forms. We presented the building-up construction for self-dual codes over GF(q) with (mod 4), and over other certain rings (see [19], [20]). Since then, the existence of the building-up construction for the open case over GF(q) with (mod 4) with an odd prime p satisfying (mod 4) with r odd has not been solved. In this paper, we answer it positively by presenting the building-up construction explicitly. As examples, we present new optimal self-dual [16, 8, 7] codes over GF(7) and new self-dual codes over GF(7) with the best known parameters [24, 12, 9].
 Keywords
building-up construction;linear codes;self-dual codes;
 Language
English
 Cited by
1.
Complementary information set codes over GF(p), Designs, Codes and Cryptography, 2016, 81, 3, 541  crossref(new windwow)
2.
t-CIS codes over GF(p) and orthogonal arrays, Discrete Applied Mathematics, 2017, 217, 601  crossref(new windwow)
3.
On the Problem of the Existence of a Square Matrix U Such That UUT=-I over Zpm, Information, 2017, 8, 3, 80  crossref(new windwow)
 References
1.
C. Aguilar Melchor and P. Gaborit, On the classification of extremal [36, 18, 8] binary self-dual codes, IEEE Trans. Inform. Theory, 54 (2008), no. 10, 4743-4750. crossref(new window)

2.
C. Aguilar-Melchor, P. Gaborit, J.-L. Kim, L. Sok, and P. Sole, Classification of extremal and s-extremal binary self-dual codes of length 38, IEEE Trans. Inform. Theory 58 (2012), no. 4, 2253-2262. crossref(new window)

3.
R. Alfaro and K. Dhul-Qarnayn, Constructing self-dual codes over $F_q[u]/(u^t)$, Des. Codes Cryptogr. 74 (2015), no. 2, 453-465. crossref(new window)

4.
R. A. Brualdi and V. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory 37 (1991), no. 4, 1222-1225. crossref(new window)

5.
J. Cannon and C. Playoust, An Introduction to Magma, University of Sydney, Sydney, Australia, 1994.

6.
S. T. Dougherty, Shadow codes and weight enumerators, IEEE Trans. Inform. Theory 41 (1995), no. 3, 762-768. crossref(new window)

7.
T. A. Gulliver and M. Harada, New optimal self-dual codes over GF(7), Graphs Combin. 15 (1999), no. 2, 175-186. crossref(new window)

8.
T. A. Gulliver, M. Harada, and H. Miyabayashi, Double circulant and quasi-twisted self-dual codes over $\mathbb{F}_5$ and $\mathbb{F}_7$, Adv. Math. Commun. 1 (2007), no. 2, 223-238. crossref(new window)

9.
T. A. Gulliver, J.-L. Kim, and Y. Lee, New MDS or near-MDS self-dual codes, IEEE Trans. Inform. Theory 54 (2008), no. 9, 4354-4360. crossref(new window)

10.
S. Han, A method for constructing self-dual codes over $\mathbb{Z}_{2^m}$, Des. Codes Cryptogr. 75 (2015), no. 2, 253-262. crossref(new window)

11.
S. Han, H. Lee, and Y. Lee, Constructions of self-dual codes over $\mathbb{F}_2+u{\mathbb{F}}_2$, Bull. Korean Math. Soc. 49 (2012), no. 1, 135-143. crossref(new window)

12.
M. Harada, The existence of a self-dual [70, 35, 12] code and formally self-dual codes, Finite Fields Appl. 3 (1997), no. 2, 131-139. crossref(new window)

13.
M. Harada, personal communication on April 25, 2009.

14.
M. Harada and P. R. J. Ostergard, Self-dual and maximal self-orthogonal codes over $\mathbb{F}_7$, Discrete Math. 256 (2002), no. 1-2, 471-477. crossref(new window)

15.
W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), no. 3, 451-490. crossref(new window)

16.
K. F. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York-Berlin, 1982.

17.
J.-L. Kim, New extremal self-dual codes of lengths 36, 38 and 58, IEEE Trans. Inform. Theory 47 (2001), 386-393. crossref(new window)

18.
J.-L. Kim, http://maths.sogang.ac.kr/jlkim/preprints.html.

19.
J.-L. Kim and Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Combin. Theory Ser. A 105 (2004), no. 1, 79-95. crossref(new window)

20.
J.-L. Kim and Y. Lee, Construction of MDS Self-dual codes over Galois rings, Des. Codes Cryptogr. 45 (2007), no. 2, 247-258. crossref(new window)

21.
J.-L. Kim and Y. Lee, Self-dual codes using the building-up construction, IEEE International Symposium on Information Theory, 2400-2402, June 28 - July 3, Seoul, Korea, 2009.

22.
H. Lee and Y. Lee, Construction of self-dual codes over finite rings $\mathbb{Z}_{p^m}$, J. Combin. Theory Ser. A 115 (2008), no. 3, 407-422. crossref(new window)

23.
J. S. Leon, V. Pless, and N. J. A. Sloane, On ternary self-dual codes of length 24, IEEE Trans. Inform. Theory 27 (1981), no. 2, 176-180. crossref(new window)

24.
V. Pless, On the classification and enumeration of self-dual codes, J. Combin. Theory Ser. A 18 (1975), no. 3, 313-335. crossref(new window)

25.
V. Pless and V. Tonchev, Self-dual codes over GF(7), IEEE Trans. Inform. Theory 33 (1987), no. 5, 723-727. crossref(new window)

26.
E. Rains and N. J. A. Sloane, Self-dual codes, in: V. S. Pless, W. C. Huffman (Eds.), Handbook of Coding Theory, Elsevier, Amsterdam. The Netherlands, 1998.