JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME ISOTROPIC CURVES AND REPRESENTATION IN COMPLEX SPACE ℂ3
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME ISOTROPIC CURVES AND REPRESENTATION IN COMPLEX SPACE ℂ3
Qian, Jinhua; Kim, Young Ho;
  PDF(new window)
 Abstract
In this paper, we give a representation formula for an isotropic curve with pseudo arc length parameter and define the structure function of such curves. Using the representation formula and the Frenet formula, the isotropic Bertrand curve and k-type isotropic helices are characterized in the 3-dimensional complex space .
 Keywords
isotropic curve;isotropic Bertrand curve;k-type isotropic helix;pesudo curvature;structure function;
 Language
English
 Cited by
1.
Contributions to differential geometry of isotropic curves in the complex space C3 – II, Journal of Mathematical Analysis and Applications, 2016, 440, 2, 561  crossref(new windwow)
 References
1.
A. Ali, R. Lopez, and M. Turgut, k-type partially null and pseudo null slant helices in Minkowski 4-space, Math. Commun. 17 (2012), no. 1, 93-103.

2.
R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

3.
H. Liu and Q. Meng, Representation formulas of curves in a two- and three-dimensional lightlike cone, Results Math. 59 (2011), no. 3-4, 437-451. crossref(new window)

4.
U. Pekmen, On minimal space curves in the sense of Bertrand curves, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999), 3-8.

5.
B. Schwarz, Complex nonoscillation theorems and criteria of univalence, Trans. Amer. Math. Soc. 80 (1955), 159-186. crossref(new window)

6.
S. Yilmaz, Contributions to differential geometry of isotropic curves in the complex space, J. Math. Anal. Appl. 374 (2011), no. 2, 673-680. crossref(new window)

7.
S. Yilmaz and M. Turgut, Some characterizations of isotropic curves in the Euclidean space, Int. J. Comput. Math. Sci. 2 (2008), no. 2, 107-109.