JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RESOLUTION OF UNMIXED BIPARTITE GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RESOLUTION OF UNMIXED BIPARTITE GRAPHS
Mohammadi, Fatemeh; Moradi, Somayeh;
  PDF(new window)
 Abstract
Let G be a graph on the vertex set $V(G)
 Keywords
minimal free resolution;unmixed bipartite graph;edge ideal;
 Language
English
 Cited by
1.
THE PROJECTIVE DIMENSION OF THE EDGE IDEAL OF A VERY WELL-COVERED GRAPH, Nagoya Mathematical Journal, 2017, 1  crossref(new windwow)
 References
1.
D. Bayer, H. Charalambous, and S. Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra 221 (1999), no. 2, 497-512. crossref(new window)

2.
D. Bayer and M. Stillman, Macaulay, A system for computation in algebraic geometry and commutative algebra.

3.
H. T. Ha and A. Van Tuyl, Resolutions of square-free monomial ideals via facet ideals: a survey, Algebra, geometry and their interactions, 91-117, Contemp. Math., 448, Amer. Math. Soc., Providence, RI, 2007.

4.
H. T. Ha and A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers, J. Algebraic Combin. 27 (2008), no. 2, 215-245. crossref(new window)

5.
J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, J. Algebraic Combin. 22 (2005), no. 3, 289-302. crossref(new window)

6.
J. Herzog, T. Hibi, and H. Ohsugi, Unmixed bipartite graphs and sublattices of the Boolean lattices, J. Algebraic Combin. 30 (2009), no. 4, 415-420. crossref(new window)

7.
J. Herzog, T. Hibi, and X. Zheng, Cohen-Macaulay chordal graphs, J. Combin. Theory Ser. A 113 (2006), no. 5, 911-916. crossref(new window)

8.
J. Herzog, T. Hibi, and X. Zheng, The monomial ideal of a finite meet-semilattice, Trans. Amer. Math. Soc. 358 (2006), no. 9, 4119-4134. crossref(new window)

9.
T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, in Commutative algebra and combinatorics (Kyoto, 1985), 93-109, Adv. Stud. Pure Math., 11, North-Holland, Amsterdam, 1987.

10.
M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A 113 (2006), no. 3, 435-454. crossref(new window)

11.
F. Khosh-Ahang and S. Moradi, Regularity and projective dimension of edge ideal of $C_5$-free vertex decomposable graphs, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1567-1576. crossref(new window)

12.
K. Kimura, Non-vanishingness of Betti numbers of edge ideals, Harmony of Grobner bases and the modern industrial society, 153-168, World Sci. Publ., Hackensack, NJ, 2012.

13.
M. Kummini, Regularity, depth and arithmetic rank of bipartite edge ideals, J. Algebraic Combin. 30 (2009), 429-445. crossref(new window)

14.
N. Terai, Alexander duality theorem and Stanley-Reisner rings. Free resolutions of coordinate rings of projective varieties and related topics, (Japanese) (Kyoto, 1998), Surikaisekikenkyusho Kokyuroku (1999), no. 1078, 174-184.

15.
A. Van Tuyl, Sequentially Cohen-Macaulay bipartite graphs: vertex decomposability and regularity, Arch. Math. (Basel) 93 (2009), no. 5, 451-459. crossref(new window)

16.
R. H. Villarreal, Unmixed bipartite graphs, Rev. Colombiana Mat. 41 (2007), no. 2, 393-395.

17.
X. Zheng, Resolutions of facet ideals, Comm. Algebra 32 (2004), no. 6, 2301-2324. crossref(new window)