JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AN INTEGRAL REPRESENTATION, SOME INEQUALITIES, AND COMPLETE MONOTONICITY OF THE BERNOULLI NUMBERS OF THE SECOND KIND
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AN INTEGRAL REPRESENTATION, SOME INEQUALITIES, AND COMPLETE MONOTONICITY OF THE BERNOULLI NUMBERS OF THE SECOND KIND
Qi, Feng; Zhang, Xiao-Jing;
  PDF(new window)
 Abstract
In the paper, the authors discover an integral representation, some inequalities, and complete monotonicity of the Bernoulli numbers of the second kind.
 Keywords
Bernoulli numbers of the second kind;integral representation;inequality;completely monotonic sequence;Cauchy integral formula;
 Language
English
 Cited by
1.
AN INTEGRAL REPRESENTATION, SOME INEQUALITIES, AND COMPLETE MONOTONICITY OF THE BERNOULLI NUMBERS OF THE SECOND KIND,;;

대한수학회보, 2015. vol.52. 3, pp.987-998 crossref(new window)
1.
Integral representations of bivariate complex geometric mean and their applications, Journal of Computational and Applied Mathematics, 2018, 330, 41  crossref(new windwow)
2.
Two closed forms for the Bernoulli polynomials, Journal of Number Theory, 2016, 159, 89  crossref(new windwow)
3.
AN INTEGRAL REPRESENTATION, SOME INEQUALITIES, AND COMPLETE MONOTONICITY OF THE BERNOULLI NUMBERS OF THE SECOND KIND, Bulletin of the Korean Mathematical Society, 2015, 52, 3, 987  crossref(new windwow)
4.
Derivatives of tangent function and tangent numbers, Applied Mathematics and Computation, 2015, 268, 844  crossref(new windwow)
 References
1.
M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972.

2.
C. Berg, A Pick function related to an inequality for the entropy function, J. Inequal. Pure Appl. Math. 2 (2001), no. 2, Art. 26, 3 pp.

3.
C. Berg and H. L. Pedersen, A one-parameter family of Pick functions defined by the Gamma function and related to the volume of the unit ball in n-space, Proc. Amer. Math. Soc. 139 (2011), no. 6, 2121-2132.

4.
C. Berg and H. L. Pedersen, A Pick function related to the sequence of volumes of the unit ball in n-space, available online at http://arxiv.org/abs/0912.2185.

5.
L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged Edition, D. Reidel Publishing Co., Dordrecht and Boston, 1974.

6.
A. M. Fink, Kolmogorov-Landau inequalities for monotone functions, J. Math. Anal. Appl. 90 (1982), no. 1, 251-258. crossref(new window)

7.
T.W. Gamelin, Complex Analysis, Undergraduate Texts in Mathematics, Springer, New York-Berlin-Heidelberg, 2001.

8.
G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1934.

9.
A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and its Applications, 2nd Ed., Springer Verlag, New York-Dordrecht-Heidelberg-London, 2011.

10.
D. S. Mitrinovic and J. E. Pecaric, On two-place completely monotonic functions, Anzeiger Oster. Akad. Wiss. Math.-Natturwiss. Kl. 126 (1989), 85-88.

11.
D. S. Mitrinovic, J. E. Pecaric, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.

12.
F. Qi, An integral representation and properties of Bernoulli numbers of the second kind, available online at http://arxiv.org/abs/1301.7181. crossref(new window)

13.
F. Qi, An integral representation, complete monotonicity, and inequalities of Cauchy numbers of the second kind, J. Number Theory 144 (2014), 244-255. crossref(new window)

14.
F. Qi, S. Guo, and B.-N. Guo, Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math. 233 (2010), no. 9, 2149-2160. crossref(new window)

15.
F. Qi, Q.-M. Luo, and B.-N. Guo, Complete monotonicity of a function involving the divided difference of digamma functions, Sci. China Math. 56 (2013), no. 11, 2315-2325. crossref(new window)

16.
F. Qi, C.-F. Wei, and B.-N. Guo, Complete monotonicity of a function involving the ratio of gamma functions and applications, Banach J. Math. Anal. 6 (2012), no. 1, 35-44. crossref(new window)

17.
F. Qi and X.-J. Zhang, A Stieltjes function involving the logarithmic function and an application, available online at http://arxiv.org/abs/1301.6425.

18.
R. L. Schilling, R. Song, and Z. Vondracek, Bernstein Functions-Theory and Applications, 2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012.

19.
H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Armsterdam-London-New York, 2012.

20.
H. van Haeringen, Completely monotonic and related functions, J. Math. Anal. Appl. 204 (1996), no. 2, 389-408. crossref(new window)

21.
D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.

22.
X.-J. Zhang, Integral Representations, Properties, and Applications of Three Classes of Functions, Thesis supervised by Professor Feng Qi and submitted for the Master Degree of Science in Mathematics at Tianjin Polytechnic University in January 2013.