JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PERMANENCE OF A TWO SPECIES DELAYED COMPETITIVE MODEL WITH STAGE STRUCTURE AND HARVESTING
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PERMANENCE OF A TWO SPECIES DELAYED COMPETITIVE MODEL WITH STAGE STRUCTURE AND HARVESTING
XU, CHANGJIN; ZU, YUSEN;
  PDF(new window)
 Abstract
In this paper, a two species competitive model with stage structure and harvesting is investigated. By using the differential inequality theory, some new sufficient conditions which ensure the permanence of the system are established. Our result supplements the main results of Song and Chen [Global asymptotic stability of a two species competitive system with stage structure and harvesting, Commun. Nonlinear Sci. Numer. Simul. 19 (2001), 81-87].
 Keywords
competitive model;permanence;harvesting;stage structure;delay;
 Language
English
 Cited by
 References
1.
J. R. Bence and R. M. Nisbet, Space-limited recruitment in open systems: the importance of time delays, Ecology 70 (1989), no. 5, 1434-1441. crossref(new window)

2.
A. A. Berryman, The origns and evolution of predator-prey theory, Ecology 73 (1992), no. 5, 1530-1535. crossref(new window)

3.
L. M. Cai and X. Y. Song, Permanence and stability of a predator-prey system with stage structure for predator, J. Comput. Appl. Math. 201 (2007), no. 2, 356-366. crossref(new window)

4.
F. D. Chen, The permanence and global attractivity of Lotka-Volterra competition system with feedback control, Nonlinear Anal. Real World Appl. 7 (2006), no. 1, 133-143. crossref(new window)

5.
F. D. Chen, Permanence of a discrete n-species food-chain system with time delays, Appl. Math. Comput. 185 (2007), no. 1, 719-726. crossref(new window)

6.
F. D. Chen, Partial survival and extinction of a delayed predator-prey model with stage structure, Appl. Math. Comput. 219 (2012), no. 8, 4157-4162. crossref(new window)

7.
F. D. Chen, W. L. Chen, Y. M. Wu, and Z. Z. Ma, Permanence of a stage-structured predator-prey system, Appl. Math. Comput. 219 (2013), no. 17, 8856-8862. crossref(new window)

8.
F. D. Chen and M. S. You, Permanence for an integrodifferential model of mutualism, Appl. Math. Comput. 186 (2007), no. 1, 30-34. crossref(new window)

9.
K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations, Funkcial. Ekvac. 29 (1986), no. 1, 77-90.

10.
J. M. Cushing, Periodic time-dependent predator-prey system, SIAM J. Appl. Math. 32 (1977), no. 1, 82-95. crossref(new window)

11.
J. Dhar and K. S. Jatav, Mathematical analysis of a delayed stage-structured predator-prey model with impulsive diffusion between two predators territories, Ecol. Complex. in Press.

12.
Y. H. Fan and W. T. Li, Permanence for a delayed discrete ratio-dependent predator-prey model with Holling type functional response, J. Math. Anal. Appl. 299 (2004), no. 2, 357-374. crossref(new window)

13.
Z. Y. Hou, On permanence of all subsystems of competitive Lotka-Volterra systems with delays, Nonlinear Anal. Real World Appl. 11 (2010), no. 5, 4285-4301. crossref(new window)

14.
Z. Y. Hou, On permanence of Lotka-Volterra systems with delays and variable intrinsic growth rates, Nonlinear Anal. Real World Appl. 14 (2013), no. 2, 960-975. crossref(new window)

15.
H. X. Hu, Z. D. Teng, and H. J. Jiang, On the permanence in non-autonomous Lotka-Volterra competitive system with pure-delays and feedback controls, Nonlinear Anal. Real World Appl. 10 (2009), no. 3, 1803-1815. crossref(new window)

16.
V. A. A. Jansen, R. M. Nisbet, and W. S. C Gurney, Generation cycles in stage structured populations, Bull. Math. Biol. 52 (1990), no. 3, 375-396. crossref(new window)

17.
X. Y. Liao, S. F. Zhou, and Y. M. Chen, Permanence and global stability in a discrete n-species competition system with feedback controls, Nonlinear Anal. Real World Appl. 9 (2008), no. 4, 1661-1671. crossref(new window)

18.
S. Q. Liu and L. S. Chen, Necessary-sufficient conditions for permanence and extinction in lotka-volterra system with distributed delay, Appl. Math. Lett. 16 (2003), no. 6, 911-917. crossref(new window)

19.
S. Q. Liu, L. S. Chen, and Z. J. Liu, Extinction and permanence in nonautonomous competitive system with stage structure, J. Math. Anal. Appl. 274 (2002), no. 2, 667-684. crossref(new window)

20.
X. Lv, S. P. Lu, and P. Lu, Existence and global attractivity of positive periodic solutions of Lotka-Volterra predator-prey systems with deviating arguments, Nonlinear Anal. Real World Appl. 11 (2010), no. 1, 574-583. crossref(new window)

21.
Z. H. Ma, Z. Z. Li, S. F. Wang, T. Li, and F. P. Zhang, Permanence of a predator-prey system with stage structure and time delay, Appl. Math. Comput. 201 (2008), no. 1-2, 65-71. crossref(new window)

22.
F. Montes de Oca and M. Vivas, Extinction in a two dimensional Lotka-Volterra sysstem with infinite delay, Nonlinear Anal. Real World Appl. 7 (2006), no. 5, 1042-1047. crossref(new window)

23.
Y. Muroya, Permanence and global stability in a Lotka-Volterra predator-prey system with delays, Appl. Math. Lett. 16 (2003), no. 8, 1245-1250. crossref(new window)

24.
R. M. Nisbet, W. S. C. Gurney, and J. A. J. Metz, Stage structure models applied in evolutionary ecology, in Applied Mathematical Ecology, Biomathematics, pp. 428-449, Springer, Berlin, Germany, 1989.

25.
X. Y. Song and L. S. Chen, Global asymptotic stability of a two species competitive system with stage structure and harvesting, Commun. Nonlinear Sci. Numer. Simul. 6 (2001), no. 2, 81-87. crossref(new window)

26.
Z. D. Teng, Y. Zhang, and S. J. Gao, Permanence criteria for general delayed discrete nonautonomous-species Kolmogorov systems and its applications, Comput. Math. Appl. 59 (2010), no. 2, 812-828. crossref(new window)

27.
J. Y.Wang, Q. S. Lu, and Z. S. Feng, A nonautonomous predator-prey system with stage structure and double time delays, J. Comput. Appl. Math. 230 (2009), no. 1, 283-299. crossref(new window)

28.
R. Xu, L. S. Chen, and F. L. Hao, Periodic solutions of an n-species Lotka-Volterra type food-chain model with time delays, Appl. Math. Comput. 171 (2005), no. 1, 511-530. crossref(new window)

29.
J. D. Zhao and J. F. Jiang, Average conditons for permanence and extinction in nonantonomous Lotka-Volterra system, J. Math. Anal. Appl. 299 (2004), no. 2, 663-675. crossref(new window)