JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EQUIVARIANT CROSSED MODULES AND COHOMOLOGY OF GROUPS WITH OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EQUIVARIANT CROSSED MODULES AND COHOMOLOGY OF GROUPS WITH OPERATORS
CUC, PHAM THI; QUANG, NGUYEN TIEN;
  PDF(new window)
 Abstract
In this paper we study equivariant crossed modules in its link with strict graded categorical groups. The resulting Schreier theory for equivariant group extensions of the type of an equivariant crossed module generalizes both the theory of group extensions of the type of a crossed module and the one of equivariant group extensions.
 Keywords
-crossed module;strict graded categorical group;regular graded monoidal functor;equivariant extension;equivariant cohomology;
 Language
English
 Cited by
 References
1.
J. C. Baez and A. D. Lauda, Higher dimensional algebra V: 2-groups, Theory Appl. Categ. 12 (2004), 423-491.

2.
R. Brown and O. Mucuk, Covering groups of non-connected topological groups revisited, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 1, 97-110. crossref(new window)

3.
R. Brown and C. B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Indag. Math. 38 (1976), no. 4, 296-302.

4.
M. Calvo, A. M. Cegarra, and N. T. Quang, Higher cohomologies of modules, Algebr. Geom. Topol. 12 (2012), no. 1, 343-413. crossref(new window)

5.
A. M. Cegarra, A. R. Garzon, and J. A. Ortega, Graded extensions of monoidal categories, J. Algebra 241 (2001), no. 2, 620-657. crossref(new window)

6.
A. M. Cegarra, J. M. Garcia-Calcines, and J. A. Ortega, On graded categorical groups and equivariant group extensions, Canad. J. Math. 54 (2002), no. 5, 970-997. crossref(new window)

7.
A. M. Cegarra, J. M. Garcia-Calcines, and J. A. Ortega, Cohomology of groups with operators, Homology Homotopy Appl. 4 (2002), no. 1, 1-23.

8.
P. Dedecker, Les foncteurs $Ext_{\Pi}$, $H^2_{\Pi}$et $H^2_{\Pi}$ non abeliens, C. R. Acad. Sci. Paris 258 (1964), 4891-4894.

9.
A. Frohlich and C. T. C. Wall, Graded monoidal categories, Compos. Math. 28 (1974), 229-285.

10.
A. Grothendieck, Categories fibrees et descente, (SGA I, expose VI), Lecture Notes in Math. 224, 145-194, Springer, Berlin, 1971.

11.
A. Joyal and R. Street, Braided tensor categories, Adv. Math. 82 (1993), no. 1, 20-78.

12.
B. Noohi, Group cohomology with coefficients in a crossed-module, J. Inst. Math. Jussieu 10 (2011), no. 2, 359-404. crossref(new window)

13.
N. T. Quang and P. T. Cuc, Crossed bimodules over rings and Shukla cohomology, Math. Commun. 17 (2012), no. 2, 575-598.

14.
N. T. Quang, P. T. Cuc, and N. T. Thuy, Crossed modules and strict Gr-categories, Comm. Korean Math. Soc. 29 (2014), no. 1, 9-22. crossref(new window)

15.
N. T. Quang, N. T. Thuy, and P. T. Cuc, Monoidal functors between (braided) Gr-categories and their applications, East-West J. Math. 13 (2011), no. 2, 163-186.

16.
R. L. Taylor, Compound group extensions I, Trans. Amer. Math. Soc. 75 (1953), 106-135. crossref(new window)

17.
K.-H. Ulbrich, Group cohomology for Picard Categories, J. Algebra 91 (1984), no. 2, 464-498. crossref(new window)

18.
K.-H. Ulbrich, On cohomology of graded group categories, Compos. Math. Tome 63 (1987), no. 3, 409-417.

19.
J. H. C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55 (1949), 453-496. crossref(new window)