JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE DIOPHANTINE EQUATION (an)x + (bn)y = (cn)z
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE DIOPHANTINE EQUATION (an)x + (bn)y = (cn)z
MA, MI-MI; WU, JIAN-DONG;
  PDF(new window)
 Abstract
In 1956, conjectured that, for any positive integer n and any primitive Pythagorean triple (a, b, c) with , the equation has the unique solution (x, y, z) = (2, 2, 2). In this paper, under some conditions, we prove the conjecture for the primitive Pythagorean triples .
 Keywords
' conjecture;Diophantine equation;Pythagorean triple;
 Language
English
 Cited by
 References
1.
Demjanenko, On Jesmanowicz' problem for Pythagorean numbers, Izv. Vyss. Ucebn. Zaved. Mat. 48 (1965), no. 5, 52-56.

2.
M. J. Deng, A note on the Diophantine equation $(na)^x$ + $(nb)^y$ = $(nc)^z$, Bull. Austral. Math. Soc. 89 (2014), no. 2, 316-321. crossref(new window)

3.
M. J. Deng and G. L. Cohen, On the conjecture of Jesmanowicz concerning Pythagorean triples, Bull. Austral. Math. Soc. 57 (1998), no. 3, 515-524. crossref(new window)

4.
L. Jesmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/56), 196-202.

5.
M. H. Le, A note on Jesmanowicz conjecture, Colloq. Math. 69 (1995), no. 1, 47-51.

6.
M. H. Le, On Jesmanowicz conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 5, 97-98. crossref(new window)

7.
M. H. Le, A note on Jesmanowicz' conjecture concerning Pythangorean triples, Bull. Austral. Math. Soc. 59 (1999), no. 3, 477-480. crossref(new window)

8.
W. T. Lu, On the Pythagorean numbers $4n^2$-1, 4n and $4n^2$+1, Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42.

9.
T. Miyazaki, Generalizatioins of classical results on Jesmanowicz' conjecture concerning Pythagorean triples, J. Number Theory 133 (2013), no. 2, 583-595. crossref(new window)

10.
W. Sierpinski, On the Diophantine equation $3^x$ + $4^y$ = $5^z$, Wiadom. Mat. 1 (1955/56), 194-195.

11.
K. Takakuwa, On a conjecture on Pythagorean numbers. III, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 9, 345-349. crossref(new window)

12.
K. Takakuwa, A remark on Jesmanowicz' conjecture, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 6, 109-110. crossref(new window)

13.
K. Takakuwa and Y. Asaeda, On a conjecture on Pythagorean numbers. II, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 8, 287-290. crossref(new window)

14.
M. Tang and J. X. Weng, Jesmanowicz' conjecture with Fermat numbers, Taiwanese J. Math. 18 (2014), no. 3, 925-930.

15.
M. Tang and Z. J. Yang, Jesmanowicz' conjecture revisited, Bull. Austral. Math. Soc. 88 (2013), no. 3, 486-491. crossref(new window)

16.
Z. J. Yang and M. Tang, On the Diophantine equation $(8n)^x$ + $(15n)^y$ = $(17n)^z$, Bull. Austral. Math. Soc. 86 (2012), no. 2, 348-352. crossref(new window)