JOURNAL BROWSE
Search
Advanced SearchSearch Tips
GENERALIZED CAYLEY GRAPHS OF RECTANGULAR GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
GENERALIZED CAYLEY GRAPHS OF RECTANGULAR GROUPS
ZHU, YONGWEN;
  PDF(new window)
 Abstract
We describe generalized Cayley graphs of rectangular groups, so that we obtain (1) an equivalent condition for two Cayley graphs of a rectangular group to be isomorphic to each other, (2) a necessary and sufficient condition for a generalized Cayley graph of a rectangular group to be (strong) connected, (3) a necessary and sufficient condition for the colour-preserving automorphism group of such a graph to be vertex-transitive, and (4) a sufficient condition for the automorphism group of such a graph to be vertex-transitive.
 Keywords
generalized Cayley graph of semigroups;rectangular group;connected graph;isomorphism;colour-preserving automorphism;vertex-transitive;
 Language
English
 Cited by
1.
On transitive generalized Cayley graphs of semigroups, Semigroup Forum, 2016, 93, 2, 247  crossref(new windwow)
 References
1.
L. Babai, Automorphism groups, isomorphism, reconstruction, in: Handbook of Combinatorics, pp. 1447-1540, Elsevier, Amsterdam, 1995.

2.
A. Devillers, W. Jin, C. H. Li, and C. E. Praeger, On normal 2-geodesic transitive Cayley graphs, J. Algebraic Combin. 39 (2014), no. 4, 903-918. crossref(new window)

3.
S. Fan, Vertex transitive Cayley graphs of semigroups of order a product of two primes, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 14 (2007), Bio-inspired computing theory and applications, Part 2, suppl. S3, pp. 905-909.

4.
R. S. Gigon, Rectangular group congruences on a semigroup, Semigroup Forum 87 (2013), no. 1, 120-128. crossref(new window)

5.
C. D. Godsil, On Cayley graph isomorphisms, Ars Combin. 15 (1983), 231-246.

6.
D. Grynkiewicz, V. F. Lev, and O. Serra, Connectivity of addition Cayley graphs, J. Combin. Theory Ser. B 99 (2009), no. 1, 202-217. crossref(new window)

7.
Y. Hao, X. Yang, and N. Jin, On transitive Cayley graphs of strong semilattices of rectangular groups, Ars Combin. 105 (2012), 183-192.

8.
J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.

9.
A. V. Kelarev, On undirected Cayley graphs, Australas. J. Combin. 25 (2002), 73-78.

10.
A. V. Kelarev, Graph Algebras and Automata, Marcel Dekker, Inc., New York, 2003.

11.
A. V. Kelarev and C. E. Praeger, On transitive Cayley graphs of groups and semigroups, European J. Combin. 24 (2003), no. 1, 59-72. crossref(new window)

12.
A. V. Kelarev and S. J. Quinn, Directed graphs and combinatorial properties of semigroups, J. Algebra 251 (2002), no. 1, 16-26. crossref(new window)

13.
A. V. Kelarev, J. Ryan, and J. Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math. 309 (2009), no. 17, 5360-5369. crossref(new window)

14.
B. Khosravi and M. Mahmoudi, On Cayley graphs of rectangular groups, Discrete Math. 310 (2010), no. 4, 804-811. crossref(new window)

15.
C. H. Li, Finite CI-groups are soluble, Bull. London Math. Soc. 31 (1999), no. 4, 419-423. crossref(new window)

16.
C. H. Li, On isomorphisms of finite Cayley graphs-a survey, Discrete Math. 256 (2002), no. 1-2, 301-334. crossref(new window)

17.
S. Panma, Characterization of Cayley graphs of rectangular groups, Thai J. Math. 8 (2010), no. 3, 535-543.

18.
S. Panma, N. N. Chiangmai, U. Knauer, and Sr. Arworn, Characterizations of Clifford semigroup digraphs, Discrete Math. 306 (2006), no. 12, 1247-1252. crossref(new window)

19.
S. Panma, U. Knauer, and Sr. Arworn, On transitive Cayley graphs of right (left) groups and of Clifford semigroups, Thai J. Math. 2 (2004), 183-195.

20.
S. Panma, U. Knauer, and Sr. Arworn, On transitive Cayley graphs of strong semilattices of right (left) groups, Discrete Math. 309 (2009), no. 17, 5393-5403. crossref(new window)

21.
M. Suzuki, Group Theory I, Springer, New York, 1982.

22.
S. F. Wang, A problem on generalized Cayley graphs of semigroups, Semigroup Forum 86 (2013), no. 1, 221-223. crossref(new window)

23.
R. J. Wilson, Introduction to Graph Theory, 3rd edn, Longman, New York, 1982.

24.
Y. Zhu, Generalized Cayley graphs of semigroups I, Semigroup Forum 84 (2012), no. 1, 131-143. crossref(new window)

25.
Y. Zhu, Generalized Cayley graphs of semigroups II, Semigroup Forum 84 (2012), no. 1, 144-156. crossref(new window)

26.
Y. Zhu, Cayley-symmetric semigroups, Bull. Korean Math. Soc. 52 (2015), no. 2, 409-419. crossref(new window)