JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON POSITIVENESS AND CONTRACTIVENESS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON POSITIVENESS AND CONTRACTIVENESS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION
CHOI, SUNG WOO;
  PDF(new window)
 Abstract
We provide a complete proof that there are no eigenvalues of the integral operator outside the interval (0, 1/k). arises naturally from the deflection problem of a beam with length 2l resting horizontally on an elastic foundation with spring constant k, while some vertical load is applied to the beam.
 Keywords
beam;deflection;elastic foundation;integral operator;eigenvalue;-norm;
 Language
English
 Cited by
1.
Spectral analysis of the integral operator arising from the beam deflection problem on elastic foundation II: eigenvalues, Boundary Value Problems, 2015, 2015, 1  crossref(new windwow)
 References
1.
E. Alves, E. A. de Toledo, L. A. P. Gomes, and M. B. de Souza Cortes, A note on iterative solutions for a nonlinear fourth order ode, Bol. Soc. Parana. Mat. (3) 27 (2009), no. 1, 15-20.

2.
F. W. Beaufait and P. W. Hoadley, Analysis of elastic beams on nonlinear foundations, Comput. Struct. 12 (1980), 669-676. crossref(new window)

3.
S. W. Choi, Spectral analysis of the integral operator arising from the beam deflection problem on elastic foundation I: positiveness and contractiveness, J. Appl. Math. Inform. 30 (2012), no. 1-2, 27-47.

4.
S. W. Choi, Spectral analysis of the integral operator arising from the beam deflection problem on elastic foundation II: eigenvalues, Bound. Value Probl. 2015 (2015), no. 6, 27pp. crossref(new window)

5.
S. W. Choi and T. S. Jang, Existence and uniqueness of nonlinear deflections of an infinite beam resting on a non-uniform nonlinear elastic foundation, Bound. Value Probl. 2012 (2012), no. 5, 24 pp. crossref(new window)

6.
M. Galewski, On the nonlinear elastic simply supported beam equation, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 19 (2011), no. 1, 109-119.

7.
M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall Inc., 1978.

8.
M. R. Grossinho and A. I. Santos, Solvability of an elastic beam equation in presence of a sign-type Nagumo control, Nonlinear Stud. 18 (2011), no. 2, 279-291.

9.
M. Hetenyi, Beams on Elastic Foundation, The University of Michigan Press, Ann Arbor, Mich., 1946.

10.
Y. H. Kuo and S. Y. Lee, Deflection of non-uniform beams resting on a nonlinear elastic foundation, Comput. Struct. 51 (1994), 513-519. crossref(new window)

11.
C. Miranda and K. Nair, Finite beams on elastic foundation, ASCE. I. Struct. Div. 92 (1966), 131-142.

12.
S. P. Timoshenko, Statistical and dynamical stress in rails, Proceedings of the International Congress on Applied Mechanics (Zurich), 407-418, 1926.

13.
S. P. Timoshenko, Strength of Materials: part 1 & part 2, 3rd ed., Van Nostrand, Princeton, NJ, 1955.

14.
B. Y. Ting, Finite beams on elastic foundation with restraints, ASCE. J. Struct. Div. 108 (1982), 611-621.