JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HYPERBOLIC NOTIONS ON A PLANAR GRAPH OF BOUNDED FACE DEGREE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HYPERBOLIC NOTIONS ON A PLANAR GRAPH OF BOUNDED FACE DEGREE
OH, BYUNG-GEUN;
  PDF(new window)
 Abstract
We study the relations between strong isoperimetric inequalities and Gromov hyperbolicity on planar graphs, and give an alternative proof for the following statement: if a planar graph of bounded face degree satisfies a strong isoperimetric inequality, then it is Gromov hyperbolic. This theorem was formerly proved in the author's paper from 2014 [12] using combinatorial methods, while geometric approach is used in the present paper.
 Keywords
planar graph;strong isoperimetric inequality;Gromov hyperbolicity;
 Language
English
 Cited by
 References
1.
A. D. Aleksandrov and V. A. Zalgaller, Intrinsic Geometry of Surfaces, AMS Transl. Math. Monographs, v. 15, Providence, RI, 1967.

2.
M. Bonk, Quasi-geodesic segments and Gromov hyperbolic spaces, Geom. Dedicata 62 (1996), no. 3, 281-298.

3.
J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195-199. Princeton Univ. Press, Princeton, N. J., 1970.

4.
M. Coornaert, T. Delzant, and A. Papadopoulos, Geometrie et theorie des groupes, LNM, Vol. 1441, Springer, Berlin, 1990.

5.
E. Ghys and P. de la Harpe (eds.), Sur les Groupes Hyperbolique d'apres Mikhael Gromov, Birkhauser, Boston, MA, 1990.

6.
M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pp. 183-213, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981.

7.
M. Gromov, Hyperbolic groups, In: Essays in group theory, 75-263, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987.

8.
Z. He and O. Schramm, Hyperbolic and parabolic packings, Discrete Comput. Geom. 14 (1995), no. 2, 123-149. crossref(new window)

9.
M. Kanai, Rough isometries, and combinatorial approximations of geometries of non-compact Riemannian manifolds, J. Math. Soc. Japan 37 (1985) no. 3, 391-413. crossref(new window)

10.
B. Oh, Aleksandrov surfaces and hyperbolicity, Trans. Amer. Math. Soc. 357 (2005), no. 11, 4555-4577. crossref(new window)

11.
B. Oh, Linear isoperimetric inequality and Gromov hyperbolicity on Aleksandrov surfaces, J. Chungcheong Math. Soc. 23 (2010), no. 2, 369-381.

12.
B. Oh, Duality properties of strong isoperimetric inequalities on a planar graph and combinatorial curvatures, Discrete Comput. Geom. 51 (2014), no. 4, 859-884. crossref(new window)

13.
Yu. G. Reshetnyak, Two-dimensional manifolds of bounded curvature, In: Geometry IV. Encyclopaedia of Mathematical Sciences (Yu. G. Reshetnyak eds.), pp. 3-163, Vol. 70, Springer, Berlin, 1993.

14.
P. Soardi, Potential Theory on Infinite Networks, LNM 1590, Springer-Verlag, Berlin, 1994.