JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE w-WEAK GLOBAL DIMENSION OF COMMUTATIVE RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE w-WEAK GLOBAL DIMENSION OF COMMUTATIVE RINGS
WANG, FANGGUI; QIAO, LEI;
  PDF(new window)
 Abstract
In this paper, we introduce and study the w-weak global dimension w-w.gl.dim(R) of a commutative ring R. As an application, it is shown that an integral domain R is a v-multiplication domain if and only if w-w.gl.dim(R) . We also show that there is a large class of domains in which Hilbert`s syzygy Theorem for the w-weak global dimension does not hold. Namely, we prove that if R is an integral domain (but not a field) for which the polynomial ring R[x] is w-coherent, then w-w.gl.dim(R[x])
 Keywords
GV-torsionfree module;w-module;w-flat module;w-flat dimension;w-weak global dimension;
 Language
English
 Cited by
1.
Purity over Prüfer v-multiplication domains, Journal of Algebra and Its Applications, 2017, 1850100  crossref(new windwow)
2.
Overrings of Prüfer v-multiplication domains, Journal of Algebra and Its Applications, 2017, 16, 08, 1750147  crossref(new windwow)
3.
A new application of boundary integral behaviors of harmonic functions to the least harmonic majorant, Boundary Value Problems, 2017, 2017, 1  crossref(new windwow)
 References
1.
G. W. Chang, Prufer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), no. 1, 309-319. crossref(new window)

2.
G. W. Chang, On characterizations of Prufer v-multiplication domains, Korean J. Math. 18 (2010), no. 4, 335-342.

3.
G. W. Chang, H. Kim, and J. W. Lim, Integral domains in which every nonzero t-locally principal ideal is t-invertible, Comm. Algebra 41 (2013), no. 10, 3805-3819. crossref(new window)

4.
S. El Baghdadi and S. Gabelli, Ring-theoretic properties of PvMDs, Comm. Algebra 35 (2007), no. 5, 1607-1625. crossref(new window)

5.
R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, No. 12. Marcel Dekker, Inc., New York, 1972.

6.
S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371. Springer-Verlag, Berlin, 1989.

7.
M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722. crossref(new window)

8.
E. Houston and M. Zafrullah, On t-invertibility. II, Comm. Algebra 17 (1989), no. 8, 1955-1969. crossref(new window)

9.
B. G. Kang, Prufer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), no. 1, 151-170. crossref(new window)

10.
B. G. Kang, Some questions about Prufer v-multiplication domains, Comm. Algebra 17 (1989), no. 3, 553-564. crossref(new window)

11.
H. Kim and F. Wang, On LCM-stable modules, J. Algebra Appl. 13 (2014), no. 4, 1350133, 18 pp.

12.
T. G. Lucas, Strong Prufer rings and the ring of finite fractions, J. Pure Appl. Algebra 84 (1993), no. 1, 59-71. crossref(new window)

13.
R. Matsuda, Notes of Prufer v-multiplication rings, Bull. Fac. Sci. Ibaraki Univ. Ser. A No. 12 (1980), 9-15.

14.
J. L. Mott and M. Zafrullah, On Prufer v-multiplication domains, Manuscripta Math. 35 (1981), no. 1-2, 1-26. crossref(new window)

15.
G. Picozza, A note on Prufer semistar multiplication domains, J. Korean Math. Soc. 46 (2009), no. 6, 1179-1192. crossref(new window)

16.
J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.

17.
P. Samuel, Lectures on unique factorization domains, Notes by M. Pavman Murthy, Tata Institute of Fundamental Research Lectures on Mathematics, No. 30. Tata Institute of Fundamental Research, Bombay, 1964.

18.
F. Wang, On w-projective modules and w-flat modules, Algebra Colloq. 4 (1997), no. 1, 111-120.

19.
F. Wang, w-modules over a PVMD, Proc. ISTAEM, Hong Kong, 117-120, 2001.

20.
F. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1-9.

21.
F. Wang and H. Kim, Two generalizations of projective modules and their applications, J. Pure Appl. Algebra 219 (2015), no. 6, 2099-2123. crossref(new window)

22.
F. Wang and H. Kim, w-injective modules and w-semi-hereditary rings, J. Korean Math. Soc. 51 (2014), no. 3, 509-525. crossref(new window)

23.
F. Wang and J. Zhang, Injective modules over w-Noetherian rings, Acta Math. Sinica (Chin. Ser.) 53 (2010), no. 6, 1119-1130.

24.
H. Yin and Y. Chen, w-overrings of w-Noetherian rings, Studia Sci. Math. Hungar. 49 (2012), no. 2, 200-205.

25.
H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207-222. crossref(new window)

26.
S. Zhao, F. Wang, and H. Chen, Flat modules over a commutative ring are w-modules, J. Sichuan Normal Univ. 35 (2012), 364-366.