JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MULTIPLE SOLUTIONS TO DISCRETE BOUNDARY VALUE PROBLEMS FOR THE p-LAPLACIAN WITH POTENTIAL TERMS ON FINITE GRAPHS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MULTIPLE SOLUTIONS TO DISCRETE BOUNDARY VALUE PROBLEMS FOR THE p-LAPLACIAN WITH POTENTIAL TERMS ON FINITE GRAPHS
CHUNG, SOON-YEONG; PARK, JEA-HYUN;
  PDF(new window)
 Abstract
In this paper, we prove the existence of at least three nontrivial solutions to nonlinear discrete boundary value problems $$\{^{-{\Delta}_{p,{\omega}}u(x)+V(x){\mid}u(x){\mid}^{q-2}u(x)
 Keywords
p-Laplacian difference equation;discrete p-Laplacian;discrete boundary value problems;
 Language
English
 Cited by
1.
Existence and multiplicity results for boundary value problems connected with the discrete p ( · ) − Laplacian on weighted finite graphs, Applied Mathematics and Computation, 2016, 290, 376  crossref(new windwow)
 References
1.
R. P. Agarwal, K. Perera, and D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal. 58 (2004), no. 1-2, 69-73. crossref(new window)

2.
R. P. Agarwal, K. Perera, and D. O'Regan, Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. Difference Equ. 2005 (2005), no. 2, 93-99.

3.
G. Bonanno and P. Candito, Nonlinear difference equations investigated via critical point methods, Nonlinear Anal. 70 (2009), no. 9, 3180-3186. crossref(new window)

4.
G. Bonanno, P. Candito, and G. D'Agui, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud. 14 (2014), no. 4, 915-39.

5.
P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem involving the p-Laplacian, Comput. Math. Appl. 56 (2008), no. 4, 959-964. crossref(new window)

6.
A. Elmoataz, O. Lezoray, and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing, IEEE Trans. Image Process. 17 (2008), no. 7, 1047-1060. crossref(new window)

7.
L. Gao, Existence of multiple solutions for a second-order difference equation with a parameter, Appl. Math. Comput. 216 (2010), no. 5, 1592-1598. crossref(new window)

8.
S.-Y. Ha, K. Lee, and D. Levy, Emergence of time-asymptotic ocking in a stochastic Cucker-Smale system, Commun. Math. Sci. 7 (2009), no. 2, 453-469. crossref(new window)

9.
S.-Y. Ha and D. Levy, Particle, kinetic and uid models for phototaxis, Discrete Contin. Dyn. Syst. Ser. B 12 (2009), no. 1, 77-108. crossref(new window)

10.
Z. He, On the existence of positive solutions of p-Laplacian difference equations, J. Comput. Appl. Math. 161 (2003), no. 1, 193-201. crossref(new window)

11.
D. Q. Jiang, D. O'Regan, and R. P. Agarwal, A generalized upper and lower solution method for singular discrete boundary value problems for the one-dimensional p-Laplacian, J. Appl. Anal. 11 (2005), no. 1, 35-47.

12.
J.-H. Kim, The (p, $\omega$)-Laplacian operators on nonlinear networks, Ph.D. Thesis, University of Sogang at Korea.

13.
J.-H. Kim, J.-H. Park, and J. Y. Lee, Multiple positive solutions for discrete p-Laplacian equations with potential term, Appl. Anal. Discrete Math. 7 (2013), no. 2, 327-342. crossref(new window)

14.
J.-H. Park and S.-Y. Chung, The Dirichlet boundary value problems for p-Schrodinger operators on finite networks, J. Difference Equ. Appl. 17 (2011), no. 5, 795-811. crossref(new window)

15.
J.-H. Park and S.-Y. Chung, Positive solutions for discrete boundary value problems involving the p-Laplacian with potential terms, Comput. Math. Appl. 61 (2011), no. 1, 17-29. crossref(new window)

16.
J.-H. Park, J.-H. Kim, and S.-Y. Chung, The p-Schrodinger equations on finite networks, Publ. Res. Inst. Math. Sci. 45 (2009), no. 2, 363-381. crossref(new window)

17.
V. Ta, S. Bougleux, A. Elmoataz, and O. Lezoray, Nonlocal anisotropic discrete regularization for image, data filtering and clustering, Tech. Rep., Univ. Caen, Caen, France, 2007.

18.
N. Trinajstic, Chemical Graph Theory, Second ed., CRC Press, Boca Raton, FL, 1992.

19.
N. Trinajstic, D. Babic, S. Nikolic, D. Plavsic, D. Amic, and Z. Mihalic, The Laplacian matrix in chemistry, J. Chem. Inf. Comput. Sci. 34 (1994), 368-376. crossref(new window)