JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON RELATIVE CLASS NUMBER AND CONTINUED FRACTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON RELATIVE CLASS NUMBER AND CONTINUED FRACTIONS
CHAKRABORTY, DEBOPAM; SAIKIA, ANUPAM;
  PDF(new window)
 Abstract
The relative class number of a real quadratic field $K
 Keywords
relative class number;continued fraction;
 Language
English
 Cited by
 References
1.
D. Chakraborty and A. Saikia, Another look at real quadratic fields of relative class number 1, Acta Arith. 163 (2014), no. 4, 371-378. crossref(new window)

2.
H. Cohn, A numerical study of the relative class numbers of real quadratic integral domains, Math. Comp. 16 (1962), 127-140. crossref(new window)

3.
H. Davenport, Higher Arithmetic, Cambridge University Press, 2008.

4.
P. G. L. Dirichlet, Sur une propriete des formes quadratiques a determinant positif, Math. Pures Appl. Ser II 1 (1856), 76-79.

5.
S. R. Finch, Mathematical Constants, Cambridge University Press, 2003.

6.
A. Furness and E. A. Parker, On Dirichlet's conjecture on relative class number one, J. Number Theory 132 (2012), no. 7, 1398-1403. crossref(new window)

7.
R. Mollin, Quadratics, CRC Press, 1996.

8.
R. Mollin, Proof of relative class number one for almost all real quadratic fields and a counterexample for the rest, Gen. Math. Notes 17 (2013), no. 2, 81-90.

9.
I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley and Sons Inc., U.K., Fifth Edition, 2008.