JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HELICOIDAL SURFACES OF THE THIRD FUNDAMENTAL FORM IN MINKOWSKI 3-SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HELICOIDAL SURFACES OF THE THIRD FUNDAMENTAL FORM IN MINKOWSKI 3-SPACE
CHOI, MIEKYUNG; YOON, DAE WON;
  PDF(new window)
 Abstract
We study helicoidal surfaces with the non-degenerate third fundamental form in Minkowski 3-space. In particular, we mainly focus on the study of helicoidal surfaces with light-like axis in Minkowski 3-space. As a result, we classify helicoidal surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form on the surface.
 Keywords
helicoidal surfaces;light-like axis;third fundamental form;Minkowski space;
 Language
English
 Cited by
 References
1.
M. Choi, Y. H. Kim, H. Liu, and D. W. Yoon, Helicoidal surfaces and their Gauss map in Minkowski 3-space, Bull. Korean Math. Soc. 47 (2010), no. 4, 859-881. crossref(new window)

2.
M. Choi, Y. H. Kim, and G. Park, Helicoidal surfaces and their Gauss map in Minkowski 3-space II, Bull. Korean Math. Soc. 46 (2009), no. 3, 567-576. crossref(new window)

3.
M. Choi, Y. H. Kim, and D. W. Yoon, Some classification of surfaces of revolution in Minkowski 3-space, J. Geom. 104 (2013), no. 1, 85-106. crossref(new window)

4.
O. J. Garay, An extension of Takahashi's Theorem, Geom. Dedicata 34 (1990), no. 2, 105-112.

5.
G. Kaimakamis and B. Papantoniou, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying ${\Delta}^{{II}^{\rightarrow}_r}$ = $A^{\rightarrow}_r$, J. Geom. 81 (2004), no. 1-2, 81-92. crossref(new window)

6.
G. Kaimakamis and B. Papantoniou, Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space ${\mathbb{E}}^3_1$ satisfying ${\Delta}^{{III}^{\rightarrow}_r}$ = $A^{\rightarrow}_r$, Bull. Greek Math. Soc. 50 (2005), 75-90.

7.
O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space ${\mathbb{L}}^3$, Tokyo J. Math. 6 (1983), no. 2, 297-309. crossref(new window)

8.
C. W. Lee, Y. H. Kim, and D. W. Yoon, Ruled surfaces of non-degenerate third fundamental forms in Minkowski 3-space, Appl. Math. Comput. 216 (2010), no. 11, 3200-3208. crossref(new window)

9.
B. O'Neill, Semi-Riemannian Geometry and its applications to Relativity, Academic Press, New York, 1983.

10.
B. Senoussi and M. Bekkar, Helicoidal surfaces in the 3-dimensional Lorentz-Minkowski space ${\mathbb{E}}^3_1$ satisfying ${\Delta}^{III}r$ = Ar, Tsukuba J. Math. 37 (2013), no 2, 339-353.

11.
T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. crossref(new window)