JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BARRELLEDNESS OF SOME SPACES OF VECTOR MEASURES AND BOUNDED LINEAR OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BARRELLEDNESS OF SOME SPACES OF VECTOR MEASURES AND BOUNDED LINEAR OPERATORS
FERRANDO, JUAN CARLOS;
  PDF(new window)
 Abstract
In this paper we investigate the barrellednes of some spaces of X-valued measures, X being a barrelled normed space, and provide examples of non barrelled spaces of bounded linear operators from a Banach space X into a barrelled normed space Y, equipped with the uniform convergence topology.
 Keywords
barrelled space;vector measure;bounded linear operator;projective and injective tensor product;Radon- property;
 Language
English
 Cited by
 References
1.
J. Batt, P. Dierolf, and J. Voigt, Summable sequences and topological properties of $m_0$ (I), Arch. Math. (Basel) 28 (1977), no. 1, 86-90. crossref(new window)

2.
J. C. Diaz, M. Florencio, and P. J. Paul, A uniform boundedness theorem for $L_{\infty}({\mu},X)$, Arch. Math. (Basel) 60 (1993), no. 1, 73-78. crossref(new window)

3.
L. Drewnowski, M. Florencio, and P. J. Paul, The space of Pettis integrable functions is barrelled, Proc. Amer. Math. Soc. 114 (1992), no. 3, 687-694. crossref(new window)

4.
L. Drewnowski, M. Florencio, and P. J. Paul, On the barrelledness of space of bounded vector functions, Arch. Math. 63 (1994), no. 5, 449-458. crossref(new window)

5.
J. C. Ferrando, On the barrelledness of the vector-valued bounded function space, J. Math. Anal. Appl. 184 (1994), no. 3, 437-440. crossref(new window)

6.
J. C. Ferrando, J. Kakol, and M. Lopez Pellicer, On a problem of Horvath concerning barrelled spaces of vector valued continuous functions vanishing at infinity, Bull. Belg. Math. Soc. Simon Stevin 11 (2004), no. 1, 127-132.

7.
J. C. Ferrando, M. Lopez Pellicer, and L. M. Sanchez Ruiz, Metrizable Barrelled Spaces, Pitman RNMS 332, Longman, 1995.

8.
F. J. Freniche, Barrelledness of the space of vector valued and simple functions, Math. Ann. 267 (1984), no. 4, 479-489. crossref(new window)

9.
H. Jarchow, Locally Convex Spaces, B. G. Teubner Stuttgart, 1981.

10.
J. Kakol, S. A. Saxon, and A. R. Todd, Barrelled spaces with(out) separable quotients, Bull. Austral. Math. Soc. 90 (2014), no. 2, 295-303. crossref(new window)

11.
G. Kothe, Topological Vector Spaces I, Springer-Verlag, New York Heidelberg Berlin, 1983.

12.
J. Mendoza, Barrelledness conditions on S (${\Sigma}$, E) and B (${\Sigma}$, E), Math. Ann. 261 (1982), no. 1, 11-22. crossref(new window)

13.
J. Mendoza, Necessary and sufficient conditions for C (X,E) to be barrelled or infrabarrelled, Simon Stevin 57 (1983), no. 1-2, 103-123.

14.
R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, SMM, London, 2002.

15.
S. A. Saxon, Mackey hyperplanes enlargements for Tweddle's space, Rev. R. Acad. Cienc. Exactas Fis. Ser. A Math. RACSAM 108 (2014), no. 1, 1035-1054. crossref(new window)

16.
S. A. Saxon, Weak barrelledness versus P-spaces, Descriptive topology and functional analysis, 2732, Springer Proc. Math. Stat., 80, Springer, Cham, 2014.

17.
J. Schmets, An example of the barrelled space associated to C (X,E), Lecture Notes in Math. 843, Functional Analysis, pp. 562-571, Holomorphy and Approximation Theory, Rio de Janeiro 1978, Springer-Verlag, 1981.