JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPTIMAL INEQUALITIES FOR THE CASORATI CURVATURES OF SUBMANIFOLDS OF GENERALIZED SPACE FORMS ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OPTIMAL INEQUALITIES FOR THE CASORATI CURVATURES OF SUBMANIFOLDS OF GENERALIZED SPACE FORMS ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTIONS
LEE, CHUL WOO; LEE, JAE WON; VILCU, GABRIEL-EDUARD; YOON, DAE WON;
  PDF(new window)
 Abstract
In this paper, we prove two optimal inequalities involving the intrinsic scalar curvature and extrinsic Casorati curvature of submanifolds of generalized space forms endowed with a semi-symmetric metric connection. Moreover, we also characterize those submanifolds for which the equality cases hold.
 Keywords
Casorati curvature;real space form;semi-symmetric metric connection;
 Language
English
 Cited by
1.
Optimal Inequalities for the Casorati Curvatures of Submanifolds in Generalized Space Forms Endowed with Semi-Symmetric Non-Metric Connections, Symmetry, 2016, 8, 12, 113  crossref(new windwow)
2.
Casorati Inequalities for Submanifolds in a Riemannian Manifold of Quasi-Constant Curvature with a Semi-Symmetric Metric Connection, Symmetry, 2016, 8, 4, 19  crossref(new windwow)
 References
1.
L. Albertazzi, Handbook of Experimental Phenomenology: Visual Perception of Shape, Space and Apearance, Wiley, Chichester, 2013.

2.
P. Alegre, D. E. Blair, and A. Carriazo, Generalized Sasakian space form, Israel J. Math. 141 (2004), no. 1, 157-183. crossref(new window)

3.
P. Alegre, A. Carriazo, Y. H. Kim, and D. W. Yoon, B. Y. Chen's inequality for submanifolds of generalized space forms, Indian J. Pure Appl. Math. 38 (2007), no. 3, 185-201.

4.
D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geom. 1 (1967), 331-345.

5.
D. E. Blair and A. J. Ledger, Quasiumbilical, minimal submanifolds of Euclidean space, Simon Stevin 51 (1977), no. 1, 3-22.

6.
F. Casorati, Mesure de la courbure des surfaces suivant l'idee commune. Ses rapports avec les mesures de courbure gaussienne et moyenne, Acta Math. 14 (1890), no. 1, 95-110. crossref(new window)

7.
B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arc. Math. (Basel) 60 (1993), no. 6, 568-578. crossref(new window)

8.
B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J. 41 (1999), no. 1, 33-41. crossref(new window)

9.
B.-Y. Chen, An optimal inequality for CR-warped products in complex space forms involving CR ${\delta}$-invariant, Internat. J. Math. 23 (2012), no. 3, 1250045, 17 pp. crossref(new window)

10.
B.-Y. Chen and F. Dillen, Optimal general inequalities for Lagrangian submanifolds in complex space forms, J. Math. Anal. Appl. 379 (2011), no. 1, 229-239. crossref(new window)

11.
B.-Y. Chen, F. Dillen, J. Van der Veken, and L. Vrancken, Curvature inequalities for Lagrangian submanifolds: the final solution, Differential Geom. Appl. 31 (2013), no. 6, 808-819. crossref(new window)

12.
S. Decu, S. Haesen, and L. Verstraelen, Optimal inequalities involving Casorati curvatures, Bull. Transylv. Univ. Brasov, Ser. B 14(49) (2007), Suppl., 85-93.

13.
S. Decu, S. Haesen, and L. Verstraelen, Optimal inequalities charaterising quasi-umbilical submanifolds, J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article ID 79, 7 pp.

14.
A. Friedmann and J. A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragungen, Math. Z. 21 (1924), no. 1, 211-223. crossref(new window)

15.
S. Haesen, D. Kowalczyk, and L. Verstraelen, On the extrinsic principal directions of Riemannian submanifolds, Note Math. 29 (2009), no. 2, 41-53.

16.
H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.

17.
S. Hong and M. M. Tripathi, On Ricci curvature of submanifolds of generalized Sasakian space forms, Int. J. Pure Appl. Math. Sci. 2 (2005), no. 2, 173-201.

18.
T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection, Tensor (N. S.) 23 (1972), 300-306.

19.
T. Imai, Notes on semi-symmetric metric connections, Tensor (N. S.) 24 (1972), 293-296.

20.
D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27. crossref(new window)

21.
K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103. crossref(new window)

22.
J. S. Kim, Y. M. Song, and M. M. Tripathi, B.-Y. Chen inequalities for submanifolds in generalized complex space forms, Bull. Korean Math. Soc. 40 (2003), no. 3, 411-423. crossref(new window)

23.
J.W. Lee and G. E. Vilcu, Inequalities for generalized normalized ${\delta}$-Casorati Curvatures of slant submanifolds in quaternionic space forms, Taiwanese J. Math. 19 (2015), no. 3, 691-702.

24.
R. Lemence, On four-dimensional generalized complex space forms, Nihonkai Math. J. 15 (2004), no. 2, 169-176.

25.
G. D. Ludden, Submanifolds of cosymplectic manifolds, J. Differential Geometry 4 (1970), 237-244.

26.
J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pure Appl. 162 (1992), 77-86. crossref(new window)

27.
K. Matsumoto, I. Mihai, and Y. Tazawa, Ricci tensor of slant submanifolds in complex space forms, Kodai Math. J. 26 (2003), no. 1, 85-94. crossref(new window)

28.
A. Mihai and C. Ozgur, Chen inequalities for submanifolds of real space forms with a semi-symmetric metric connection, Taiwanese J. Math. 14 (2010), no. 4, 1465-1477.

29.
A. Mihai and C. Ozgur, Chen inequalities for submanifolds of complex space forms and Sasakian space forms endowed with semi-symmetric metric connections, Rocky Mountain J. Math. 41 (2011), no. 5, 1653-1673. crossref(new window)

30.
Z. Nakao, Submanifolds of a Riemannian manifold with semi-symmetric metric connections, Proc. Amer. Math. Soc. 54 (1976), 261-266. crossref(new window)

31.
A. Oiaga and I. Mihai, B.-Y. Chen inequalities for slant submanifolds in complex space forms, Demonstratio Math. 32 (1999), no. 4, 835-846.

32.
Z. Olszak, On the existence of generalized complex space forms, Israel J. Math. 65 (1989), no. 2, 214-218. crossref(new window)

33.
J. A. Oubi-na, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.

34.
V. Slesar, B. Sahin, and G. E. Vlcu, Inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms, J. Inequal. Appl. 2014 (2014), 123. crossref(new window)

35.
F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), no. 2, 365-398. crossref(new window)

36.
M. M. Tripathi, Generic submanifolds of generalized complex space forms, Publ. Math. Debrecen 50 (1997), no. 3-4, 373-392.

37.
M. M. Tripathi, A new connection in a Riemannian manifold, Int. Electron. J. Geom. 1 (2008), no. 1, 15-24.

38.
M. M. Tripathi and S. S. Shukla, Ricci curvature and k-Ricci curvature of submanifolds of generalized complex space forms, Aligarh Bull. Math. 20 (2001), no. 1, 143-156.

39.
L. Verstraelen, The geometry of eye and brain, Soochow J. Math. 30 (2004), no. 3, 367-376.

40.
L. Verstraelen, Geometry of submanifolds I, The first Casorati curvature indicatrices, Kragujevac J. Math. 37 (2013), no. 1, 5-23.

41.
K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pure Appl. 15 (1970), 1579-1586.

42.
D. W. Yoon and K. S. Cho, Inequality for warped products in generalized Sasakian space forms, Int. Math. J. 5 (2004), no. 3, 225-235.

43.
P. Zhang, L. Zhang, and W. Song, Chen's inequalities for submanifolds of a Riemannian manifold of quasi-constatnt curvature with a semi-symmetric metric connection, Taiwanese J. Math. 18 (2014), no. 6, 1841-1862.