JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEMI-CONVERGENCE OF THE PARAMETERIZED INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SEMI-CONVERGENCE OF THE PARAMETERIZED INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS
YUN, JAE HEON;
  PDF(new window)
 Abstract
In this paper, we provide semi-convergence results of the parameterized inexact Uzawa method with singular preconditioners for solving singular saddle point problems. We also provide numerical experiments to examine the effectiveness of the parameterized inexact Uzawa method with singular preconditioners.
 Keywords
singular saddle point problem;iterative method;Uzawa method;semi-convergence;Moore-Penrose inverse;
 Language
English
 Cited by
 References
1.
M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to sparse least squares problems, Numer. Math. 55 (1989), no. 6, 667-684. crossref(new window)

2.
Z. Z. Bai, B. N. Parlett, and Z. Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math. 102 (2005), no. 1, 1-38. crossref(new window)

3.
Z. Z. Bai and Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428 (2008), no. 11-12, 2900-2932. crossref(new window)

4.
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.

5.
Z. H. Cao, On the convergence of general stationary linear iterative methods for singular linear systems, SIAM J. Matrix Anal. Appl. 29 (2007), 1382-1388.

6.
Z. Chao and G. Chen, Semi-convergence analysis of the Uzawa-SOR methods for sin-gular saddle point problems, Appl. Math. Lett. 35 (2014), 52-57. crossref(new window)

7.
Z. Chao, N. Zhang, and Y. Lu, Optimal parameters of the generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 266 (2014), 52-60. crossref(new window)

8.
M. T. Darvishi and P. Hessari, Symmetric SOR method for augmented systems, Appl. Math. Comput. 183 (2006), no. 1, 409-415. crossref(new window)

9.
H. C. Elman, Preconditioning for the steady-state Navier-Stokes equations with low viscosity, SIAM J. Sci. Comput. 20 (1999), no. 4, 1299-1316. crossref(new window)

10.
H. C. Elman and D. J. Silvester, Fast nonsymmetric iteration and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput. 17 (1996), no. 1, 33-46. crossref(new window)

11.
G. H. Golub, X. Wu, and J. Y. Yuan, SOR-like methods for augmented systems, BIT 41 (2001), no. 1, 71-85. crossref(new window)

12.
F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incom-pressible flow of fluid with free surface, Phys. Fluids 8 (1965), 2182-2189. crossref(new window)

13.
J. I. Li and T. Z. Huang, The semi-convergence of generalized SSOR method for singular augmented systems, High Performance Computing and Applications, Lecture Notes in Computer Science 5938 (2010), 230-235.

14.
S. Wright, Stability of augmented system factorization in interior point methods, SIAM J. Matrix Anal. Appl. 18 (1997), no. 1, 191-222. crossref(new window)

15.
J. Y. Yuan and A. N. Iusem, Preconditioned conjugate gradient methods for generalized least squares problem, J. Comput. Appl. Math. 71 (1996), no. 2, 287-297. crossref(new window)

16.
J. H. Yun, Variants of the Uzawa method for saddle point problem, Comput. Math. Appl. 65 (2013), no. 7, 1037-1046. crossref(new window)

17.
J. H. Yun, Convergence of relaxation iterative methods for saddle point problem, Appl. Math. Comput. 251 (2015), 65-80. crossref(new window)

18.
G. F. Zhang and Q. H. Lu, On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math. 219 (2008), no. 1, 51-58. crossref(new window)

19.
G. F. Zhang and S. S. Wang, A generalization of parameterized inexact Uzawa method for singular saddle point problems, Appl. Math. Comput. 219 (2013), no. 9, 4225-4231. crossref(new window)

20.
N. Zhang and Y. Wei, On the convergence of general stationary iterative methods for range-Hermitian singular linear systems, Numer. Linear Algebra Appl. 17 (2010), no. 1, 139-154. crossref(new window)

21.
B. Zheng, Z. Z. Bai, and X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl. 431 (2009), no. 5-7, 808-817. crossref(new window)

22.
L. Zhou and N. Zhang, Semi-convergence analysis of GMSSOR methods for singular saddle point problems, Comput. Math. Appl. 68 (2014), no. 5, 596-605. crossref(new window)