JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COSET OF A HYPERCOMPLEX NUMBER SYSTEM IN CLIFFORD ANALYSIS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COSET OF A HYPERCOMPLEX NUMBER SYSTEM IN CLIFFORD ANALYSIS
KIM, JI EUN; SHON, KWANG HO;
  PDF(new window)
 Abstract
We give certain properties of elements in a coset group with hypercomplex numbers and research a monogenic function and a Clifford regular function with values in a coset group by defining differential operators. We give properties of those functions and a power of elements in a coset group with hypercomplex numbers.
 Keywords
coset;differential operator;monogenic function;regular function;Clifford analysis;
 Language
English
 Cited by
1.
PROPERTIES OF FUNCTIONS WITH VALUES IN FIBONACCI QUATERNIONS IN CLIFFORD ANALYSIS,;;

호남수학학술지, 2016. vol.38. 4, pp.675-683 crossref(new window)
2.
HYPERMEROMORPHY OF FUNCTIONS ON SPLIT QUATERNIONS IN CLIFFORD ANALYSIS,;;

East Asian mathematical journal, 2015. vol.31. 5, pp.653-658 crossref(new window)
3.
THE DERIVATIVE OF A DUAL QUATERNIONIC FUNCTION WITH VALUES IN DUAL QUATERNIONS,;;

호남수학학술지, 2015. vol.37. 4, pp.559-567 crossref(new window)
4.
DUAL QUATERNIONIC REGULAR FUNCTION OF DUAL QUATERNION VARIABLES,;;

한국수학교육학회지시리즈B:순수및응용수학, 2016. vol.23. 1, pp.97-104 crossref(new window)
5.
PROPERTIES OF REGULAR FUNCTIONS WITH VALUES IN BICOMPLEX NUMBERS,;;

대한수학회보, 2016. vol.53. 2, pp.507-518 crossref(new window)
1.
PROPERTIES OF FUNCTIONS WITH VALUES IN FIBONACCI QUATERNIONS IN CLIFFORD ANALYSIS, Honam Mathematical Journal, 2016, 38, 4, 675  crossref(new windwow)
2.
PROPERTIES OF REGULAR FUNCTIONS WITH VALUES IN BICOMPLEX NUMBERS, Bulletin of the Korean Mathematical Society, 2016, 53, 2, 507  crossref(new windwow)
3.
DUAL QUATERNIONIC REGULAR FUNCTION OF DUAL QUATERNION VARIABLES, The Pure and Applied Mathematics, 2016, 23, 1, 97  crossref(new windwow)
4.
THE DERIVATIVE OF A DUAL QUATERNIONIC FUNCTION WITH VALUES IN DUAL QUATERNIONS, Honam Mathematical Journal, 2015, 37, 4, 559  crossref(new windwow)
 References
1.
D. C. Brody and E. M. Graefe, On complexified mechanics and coquaternions, J. Phys. A 44 (2011), no. 7, 072001, 9 pp.

2.
J. Dolbeault, M. J. Esteban, and E. Sere, On the eigenvalues of operators with gaps: Application to Dirac operators, J. Funct. Anal. 174 (2000), no. 1, 208-226. crossref(new window)

3.
K. Hasebe, Split-quaternionic Hopf map, quantum Hall effect, and twistor theory, Phys. Rev. D 81 (2010), no. 4, 041702, 5 pp.

4.
J. Hucks, Hyperbolic complex structures in physics, J. Math. Phys. 34 (1993), no. 12, 5986-6008. crossref(new window)

5.
I. M. Jaglom, Complex Numbers in Geometry, Academic Press, New York, USA, 1968.

6.
J. E. Kim, S. J. Lim, and K. H. Shon, Taylor series of functions with values in dual quaternion, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 20 (2013), no. 4, 251-258.

7.
J. E. Kim, S. J. Lim, and K. H. Shon, Regular functions with values in ternary number system on the complex Clifford analysis, Abstr. Appl. Anal. 2013 (2013), Art. ID 136120, 7 pages.

8.
J. E. Kim, S. J. Lim, and K. H. Shon, Regularity of functions on the reduced quaternion field in Clifford analysis, Abstr. Appl. Anal. 2014 (2014), Art. ID 654798, 8 pages.

9.
J. E. Kim and K. H. Shon, The Regularity of functions on dual split quaternions in Clifford analysis, Abstr. Appl. Anal. 2014 (2014), Art. ID 369430, 8 pages.

10.
S. D. Leo, Quaternions and special relativity, J. Math. Phys. 37 (1996), no. 6, 2955-2968. crossref(new window)

11.
H. I. Petrache, Coset group construction of multidimensional number systems, Symmetry 6 (2014), no. 3, 578-588. crossref(new window)

12.
G. Sobczyk, Geometric matrix algebra, Linear Algebra Appl. 429 (2008), no. 5, 1163-1173. crossref(new window)