JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A REMARK ON UNIQUE CONTINUATION FOR THE CAUCHY-RIEMANN OPERATOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A REMARK ON UNIQUE CONTINUATION FOR THE CAUCHY-RIEMANN OPERATOR
SEO, IHYEOK;
  PDF(new window)
 Abstract
In this note we obtain a unique continuation result for the differential inequality , where $\bar{\partial}
 Keywords
unique continuation;Cauchy-Riemann operator;
 Language
English
 Cited by
 References
1.
T. Carleman, Sur un probleme d'unicite pour les systemes d'equations aux derivees partielles a deux variables independantes, Ark. Mat. Astr. Fys. 26 (1939), no. 17, 1-9.

2.
L. Grafakos, Classical Fourier Analysis, Springer, New York, 2008.

3.
D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrodinger operators, Ann. of Math. 121 (1985), no. 3, 463-494. crossref(new window)

4.
C. E. Kenig, Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuations, Harmonic analysis and partial differential equations (El Escorial, 1987), 69-90, Lecture Notes in Math. 1384, Springer, Berlin, 1989.

5.
C. E. Kenig and N. Nadirashvili, A counterexample in unique continuation, Math. Res. Lett. 7 (2000), no. 5-6, 625-630. crossref(new window)

6.
C. E. Kenig and J.-N. Wang, Quantitative uniqueness estimates for second order elliptic equations with unbounded drift, Math. Res. Lett. 22 (2015), no. 4, 1159-1175. crossref(new window)

7.
H. Koch and D. Tataru, Sharp counterexamples in unique continuation for second order elliptic equations, J. Reine Angew. Math. 542 (2002), 133-146.

8.
N. Mandache, A counterexample to unique continuation in dimension two, Comm. Anal. Geom. 10 (2002), no. 1, 1-10. crossref(new window)

9.
T. H. Wolff, A property of measures in Rn and an application to unique continuation, Geom. Funct. Anal. 2 (1992), no. 2, 225-284. crossref(new window)

10.
T. H. Wolff, Recent work on sharp estimates in second-order elliptic unique continuation problems, J. Geom. Anal. 3 (1993), no. 6, 621-650. crossref(new window)