JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A MULTI-PARAMETRIC GENERALIZATION OF THE UNIFORM ZERO-TWO LAW IN L1-SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A MULTI-PARAMETRIC GENERALIZATION OF THE UNIFORM ZERO-TWO LAW IN L1-SPACES
MUKHAMEDOV, FARRUKH;
  PDF(new window)
 Abstract
Following an idea of Ornstein and Sucheston, Foguel proved the so-called uniform "zero-two" law: let T : (X, , ) (X, , ) be a positive contraction. If for some one has < 2, then $\lim_{n{\rightarrow}{\infty}}{\parallel}T^{m+1}-T^m{\parallel}
 Keywords
multi parametric;positive contraction;"zero-two" law;
 Language
English
 Cited by
1.
On a genaralized uniform zero-two law for positive contractions of non-commutativeL1-spaces, Journal of Physics: Conference Series, 2016, 697, 012003  crossref(new windwow)
 References
1.
M. Akcoglu and J. Baxter, Tail field representations and the zero-two law, Israel J. Math. 123 (2001), 253-272. crossref(new window)

2.
C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, 2006.

3.
Y. Derriennic, Lois "zero ou deux" pour les processes de Markov, Applications aux marches aleatoires, Ann. Inst. H. Poincare Sec. B 12 (1976), no. 2, 111-129.

4.
S. R. Foguel, On the "zero-two" law, Israel J. Math. 10 (1971), 275-280. crossref(new window)

5.
S. R. Foguel, More on the "zero-two" law, Proc. Amer. Math. Soc. 61 (1976), no. 2, 262-264.

6.
S. R. Foguel, A generalized 0-2 law, Israel J. Math. 45 (1983), no. 2-3, 219-224. crossref(new window)

7.
B. Jamison and S. Orey, Markov chains recurrent in the sense of Harris, Z. Wahrsch. Verw. Geb. 8 (1967), 41-48. crossref(new window)

8.
Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313-328. crossref(new window)

9.
U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.

10.
M. Lin, On the "zero-two" law for conservative Markov operators, Z. Wahrsch. Verw. Geb. 61 (1982), no. 4, 513-525. crossref(new window)

11.
M. Lin, The uniform zero-two law for positive operators in Banach lattices, Studia Math. 131 (1998), no. 2, 149-153. crossref(new window)

12.
F. Mukhamedov, On dominant contractions and a generalization of the zero-two law, Positivity 15 (2011), no. 3, 497-508. crossref(new window)

13.
D. Orstein and L. Sucheston, An operator theorem on $L_1$ convergence to zero with applications to Markov operators, Ann. Math. Statist. 41 (1970), 1631-1639. crossref(new window)

14.
H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, 1974.

15.
H. H. Schaefer, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), no. 2, 241-244. crossref(new window)

16.
A. Schep, A remark on the uniform zero-two law for positive contractions, Arch. Math. (Basel) 53 (1989), no. 5, 493-496. crossref(new window)

17.
R. Wittmann, Analogues of the "zero-two" law for positive linear contractions in $L_p$ and C(X), Israel J. Math. 59 (1987), no. 1, 8-28. crossref(new window)

18.
R. Wittmann, Ein starkes "Null-Zwei"-Gesetz in $L_p$, Math. Z. 197 (1988), no. 2, 223-229. crossref(new window)

19.
R. Zaharopol, The modulus of a regular linear operator and the 'zero-two' law in $L^p$- spaces (1 < p < +${\infty}$, p 6 ${\not=}$ 2), J. Funct. Anal. 68 (1986), no. 3, 300-312. crossref(new window)

20.
R. Zaharopol, On the 'zero-two' law for positive contractions, Proc. Edinburgh Math. Soc. (2) 32 (1989), no. 3, 363-370. crossref(new window)

21.
R. Zaharopol, A local zero-two law and some applications, Turkish J. Math. 24 (2000), no. 1, 109-120.