JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON CONVEXITY OF CONVOLUTIONS OF HARMONIC MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON CONVEXITY OF CONVOLUTIONS OF HARMONIC MAPPINGS
JIANG, YUE-PING; RASILA, ANTTI; SUN, YONG;
  PDF(new window)
 Abstract
In this paper, we study right half-plane harmonic mappings and f, where is fIxed and f is such that its dilatation of a conformal automorphism of the unit disk. We obtain a sufficient condition for the convolution of such mappings to be convex in the direction of the real axis. The result of the paper is a generalization of the result of by Li and Ponnusamy [11], which itself originates from a problem posed by Dorff et al. in [7].
 Keywords
harmonic univalent mapping;convolution;half-plane mapping;convex function;
 Language
English
 Cited by
1.
Univalency of Convolutions of Univalent Harmonic Right Half-Plane Mappings, Computational Methods and Function Theory, 2017, 17, 2, 289  crossref(new windwow)
 References
1.
O. P. Ahuja and J. M. Jahangiri, Convolutions for special classes of harmonic univalent functions, Appl. Math. Lett. 16 (2003), no. 6, 905-909. crossref(new window)

2.
R. M. Ali, B. A. Stephen, and K. G. Subramanian, Subclass of harmonic mappings de ned by convolution, Appl. Math. Lett. 23 (2010), no. 10, 1243-1247. crossref(new window)

3.
D. Bshouty and A. Lyzzaik, Problems and conjectures in planar harmonic mappings, J. Anal. 18 (2010), 69-81.

4.
J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math. 9 (1984), 3-25. crossref(new window)

5.
A. Cohn, Uber die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z. 14 (1922), no. 1, 110-148. crossref(new window)

6.
M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Theory Appl. 45 (2001), no. 3, 263-271. crossref(new window)

7.
M. Dorff, M. Nowak, and M.Wo loszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), no. 5, 489-503. crossref(new window)

8.
P. Duren, Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.

9.
M. Goodloe, Hadamard products of convex harmonic mappings, Complex Var. Theory Appl. 47 (2002), no. 2, 81-92. crossref(new window)

10.
R. Kumar, S. Gupta, S. Singh, and M. Dor , On harmonic convolutions involving a vertical strip mapping, Bull. Korean Math. Soc. 52 (2015), no. 1, 105-123. crossref(new window)

11.
L.-L. Li and S. Ponnusamy, Solution to an open problem on convolutions of harmonic mappings, Complex Var. Elliptic Equ. 58 (2013), no. 12, 1647-1653. crossref(new window)

12.
L.-L. Li and S. Ponnusamy, Convolutions of slanted half-plane harmonic mappings, Analysis (Munich) 33 (2013), no. 2, 159-176.