JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FEKETE-SZEGÖ PROBLEM FOR CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FEKETE-SZEGÖ PROBLEM FOR CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS
VASUDEVARAO, ALLU;
  PDF(new window)
 Abstract
For <, let denote the class of locally univalent normalized analytic functions in the unit disk < satisfying the condition >. In the present paper, we shall obtain the sharp upper bound for Fekete- functional for the complex parameter .
 Keywords
univalent functions;starlike;convex;close-to-convex and Fekete- problem;
 Language
English
 Cited by
1.
Fekete–Szegö inequality for certain spiral-like functions, Comptes Rendus Mathematique, 2016, 354, 11, 1065  crossref(new windwow)
 References
1.
H. R. Abdel-Gawad and D. K. Thomas, The Fekete-Szego problem for strongly closeto- convex functions, Proc. Amer. Math. Soc. 114 (1992), no. 2, 345-349.

2.
B. Bhowmik, S. Ponnusamy, and K.-J Wirths, On the Fekete-Szego problem for concave univalent functions, J. Math. Anal. Appl. 373 (2011), no. 2, 432-438. crossref(new window)

3.
J. H. Choi, Y. C. Kim, and T. Sugawa, A general approach to the Fekete-Szego problem, J. Math. Soc. Japan. 59 (2007), no. 3, 707-727. crossref(new window)

4.
P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo, Springer-Verlag, 1983.

5.
M. Fekete and G. Szego, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.

6.
J. A. Jenkins, A general coefficient theorem, Trans. Amer. Math. Soc. 77 (1954), 262- 280. crossref(new window)

7.
J. A. Jenkins, On Certain Coefficients of Univalent Funcions, Analytic Functions, Princeton University press, Princeton, N.J., 1960.

8.
F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), no. 1, 8-12. crossref(new window)

9.
Y. C. Kim and T. Sugawa, Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions, Proc. Edinb. Math. Soc. 49 (2006), no. 1, 131-143. crossref(new window)

10.
W. Koepf, On the Fekete-Szego problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), no. 1, 89-95.

11.
W. Koepf, On the Fekete-Szego problem for close-to-convex functions II, Arch. Math. (Basel) 49 (1987), no. 5, 420-433. crossref(new window)

12.
R. R. London, Fekete-Szego inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), no. 4, 947-950.

13.
W. Ma and D. Minda, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Sk lodowska, Sect. A 45 (1991), 89-97.

14.
W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis, pp. 157-169, (eds. Z. Li, F. Ren, L. Yang and S. Zhang), International Press Inc., 1992.

15.
W. Ma and D. Minda, Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl. 205 (1997), no. 2, 537-553. crossref(new window)

16.
Y. A. Muhanna, L. Li, and S. Ponnusamy, Extremal problems on the class of convex functions of order -$\frac{1}{2}$, Arch. Math. (Basel) 103 (2014), no. 6, 461-471.

17.
Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545-551. crossref(new window)

18.
A. Pfluger, The Fekete-Szego inequality by a variational method, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 447-454. crossref(new window)

19.
A. Pfluger, The Fekete-Szego inequality for complex parameters, Complex Variables Theory Appl. 7 (1986), no. 1-3, 149-160. crossref(new window)

20.
S. Ponnusamy and S. Rajasekaran, New sufficient conditions for starlike and univalent functions, Soochow J. Math. 21 (1995), no. 2, 193-201.

21.
S. Ponnusamy and V. Singh, Univalence of certain integral transforms, Glas. Mat. Ser. III (51) 31 (1996), no. 2, 253-261.

22.
S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl. 332 (2007), no. 2, 1323-1334. crossref(new window)

23.
A. Vasudevarao, An arclength problem for some subclasses of univalent functions, J. Analysis (2014) to appear.