JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME IDENTITIES FOR BERNOULLI NUMBERS OF THE SECOND KIND ARISING FROM A NON-LINEAR DIFFERENTIAL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME IDENTITIES FOR BERNOULLI NUMBERS OF THE SECOND KIND ARISING FROM A NON-LINEAR DIFFERENTIAL EQUATION
KIM, DAE SAN; KIM, TAEKYUN;
  PDF(new window)
 Abstract
In this paper, we give explicit and new identities for the Bernoulli numbers of the second kind which are derived from a non-linear differential equation.
 Keywords
Bernoulli numbers of second kind;non-linear differential equation;
 Language
English
 Cited by
1.
Some identities of degenerate Daehee numbers arising from nonlinear differential equation, Advances in Difference Equations, 2017, 2017, 1  crossref(new windwow)
2.
A note on nonlinear Changhee differential equations, Russian Journal of Mathematical Physics, 2016, 23, 1, 88  crossref(new windwow)
3.
Differential Equations Associated with Higher-order Frobenius–Euler Numbers Revisited, Differential Equations and Dynamical Systems, 2017  crossref(new windwow)
4.
Simplifying differential equations concerning degenerate Bernoulli and Euler numbers, Transactions of A. Razmadze Mathematical Institute, 2017  crossref(new windwow)
 References
1.
S. Araci and M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 399-406.

2.
A. Bayad and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 2, 247-253.

3.
L. Comtet, Advanced Combinatorics, Revised and enlarged ed., D. Reidel Publishing Co., Dordrecht, 1974.

4.
K.-W. Hwang, D. V. Dolgy, D. S. Kim, T. Kim, and S. H. Lee, Some theorems on Bernoulli and Euler numbers, Ars Combin. 109 (2013), 285-297.

5.
H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1988.

6.
D. Kang, J. Jeong, S.-H. Lee, and S.-J. Rim, A note on the Bernoulli polynomials arising from a non-linear differential equation, Proc. Jangjeon Math. Soc. 16 (2013), no. 1, 37-43.

7.
D. S. Kim and T. Kim, Higher-order Cauchy of the first kind and poly-Cauchy of the first kind mixed type polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 4, 621-636.

8.
D. S. Kim, T. Kim, Y.-H. Kim, and D. V. Dolgy, A note on Eulerian polynomials associated with Bernoulli and Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 379-389.

9.
G. Kim, B. Kim, and J. Choi, The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 137-145.

10.
T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15 (2008), no. 1, 51-57. crossref(new window)

11.
T. Kim, Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory 132 (2012), no. 12, 2854-2865. crossref(new window)

12.
Y.-H. Kim and K.-W. Hwang, Symmetry of power sum and twisted Bernoulli polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 18 (2009), no. 2, 127-133.

13.
H. Ozden, I. N. Cangul, and Y. Simsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math. (Kyungshang) 18 (2009), no. 1, 41-48.

14.
S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.

15.
E. Sen, Theorems on Apostol-Euler polynomials of higher order arising from Euler basis, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 2, 337-345.

16.
Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials as- sociated with their interpolation functions, Adv. Stud. Contemp. Math. (Kyungshang) 16 (2008), no. 2, 251-278.