JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SIMILAR AND SELF-SIMILAR CURVES IN MINKOWSKI n-SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SIMILAR AND SELF-SIMILAR CURVES IN MINKOWSKI n-SPACE
OZDEMIR, MUSTAFA; SIMSEK, HAKAN;
  PDF(new window)
 Abstract
In this paper, we investigate the similarity transformations in the Minkowski n-space. We study the geometric invariants of non-null curves under the similarity transformations. Besides, we extend the fundamental theorem for a non-null curve according to a similarity motion of . We determine the parametrizations of non-null self-similar curves in .
 Keywords
Lorentzian similarity geometry;similarity transformation;similarity invariants;similar curves;self-similar curves;
 Language
English
 Cited by
 References
1.
J. G. Alcazar, C. Hermosoa, and G. Muntinghb, Detecting similarity of rational plane curves, J. Comput. Appl. Math. 269 (2014), 1-13. crossref(new window)

2.
T. Aristide, Closed similarity Lorentzian Ane manifolds, Proc. Amer. Math. Soc. 132 (2004), no. 12, 3697-3702. crossref(new window)

3.
M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), no. 1817, 243-275. crossref(new window)

4.
M. F. Barnsley, J. E. Hutchinson, and O. Stenflo, V-variable fractals: Fractals with partial self similarity, Adv. Math. 218 (2008), no. 6, 2051-2088. crossref(new window)

5.
A. Bejancu, Lightlike curves in Lorentz manifolds, Publ. Math. Debrecen 44 (1994), no. 1-2, 145-155.

6.
M. Berger, Geometry I, Springer, New York 1987.

7.
A. Brook, A. M. Bruckstein, and R. Kimmel, On similarity-invariant fairness measures, LNCS 3459, pp. 456-467, 2005.

8.
K.-S. Chou and C. Qu, Integrable equations arising from motions of plane curves, Phys. D 162 (2002), no. 1-2, 9-33. crossref(new window)

9.
K.-S. Chou and C. Qu, Motions of curves in similarity geometries and Burgers-mKdV hierarchies, Chaos Solitons Fractals 19 (2004), no. 1, 47-53. crossref(new window)

10.
Q. Ding and J. Inoguchi, Schrodinger ows, binormal motion for curves and the second AKNS-hierarchies, Chaos Solitons Fractals 21 (2004), no. 3, 669-677. crossref(new window)

11.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Volume 364 of Mathematics and its Aplications. Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 1996.

12.
R. Encheva and G. Georgiev, Shapes of space curves, J. Geom. Graph. 7 (2003), no. 2, 145-155.

13.
R. Encheva and G. Georgiev, Similar Frenet curves, Results Math. 55 (2009), no. 3-4, 359-372. crossref(new window)

14.
K. Falconer, Fractal Geometry, Second Edition, John Wiley & Sons, Ltd., 2003.

15.
A. Ferrandez, A. Gimenez, and P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys. A 16 (2001), 4845-4863. crossref(new window)

16.
W. Greub, Linear Algebra, 3rd ed., Springer Verlag, Heidelberg, 1967.

17.
R. Grigorchuk and Z. Sunic, Self Similarity an branching group theory, Volume 1, London Mathematical Society Lecture Note Series: 339, Groups St Andrews 2005.

18.
M. Gurses, Motion of curves on two-dimensional surfaces and soliton equations, Phys. Lett. A 241 (1998), no. 6, 329-334. crossref(new window)

19.
J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. crossref(new window)

20.
Y. Kamishima, Lorentzian similarity manifolds, Cent. Eur. J. Math. 10 (2012), no. 5, 1771-1788. crossref(new window)

21.
S. Z. Li, Similarity invariants for 3D space curve matching, In Proceedings of the First Asian Conference on Computer Vision, pp. 454-457, Japan 1993.

22.
S. Z. Li, Invariant representation, matching and pose estimation of 3D space curves under similarity transformation, Pattern Recognition 30 (1997), no. 3, 447-458. crossref(new window)

23.
B. B. Mandelbrot, The Fractal Geometry of Nature, New York: W. H. Freeman, 1982.

24.
K. Nakayama, Motion of curves in hyperboloid in the Minkowski space, J. Phys. Soc. Japan 67 (1998), no. 9, 3031-3037. crossref(new window)

25.
V. Nekrashevych, Self-similar groups and their geometry, Sao Paulo J. Math. Sci. 1 (2007), no. 1, 41-95. crossref(new window)

26.
B. O'Neill, Semi-Riemannian Geometry, Academic Press Inc., London, 1983.

27.
M. Ozdemir, On the focal curvatures of non-lightlike curves in Minkowski (m+1)-space, F. U. Fen ve Muhendislik Bilimleri Dergisi 16 (2004), no. 3, 401-409.

28.
H. Sahbi, Kernel PCA for similarity invariant shape recognition, Neurocomputing 70 (2007), 3034-3045. crossref(new window)

29.
D. A. Singer and D. H. Steinberg, Normal forms in Lorentzian spaces, Nova J. Algebra Geom. 3 (1994), no. 1, 1-9.

30.
D. Xu and H. Li, 3-D curve moment invariants for curve recognition, Lecture Notes in Control and Information Sciences, 345, pp. 572-577, 2006.