JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR GENERALIZED BESSEL FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS FOR GENERALIZED BESSEL FUNCTIONS
Al-Kharsani, Huda A.; Baricz, Arpad; Nisar, Kottakkaran S.;
  PDF(new window)
 Abstract
Differential subordination and superordination preserving properties for univalent functions in the open unit disk with an operator involving generalized Bessel functions are derived. Some particular cases involving trigonometric functions of our main results are also pointed out.
 Keywords
generalized Bessel functions;univalent functions;differential subordination;differential superordination;Loewner chain;sandwich type results;Libera integral operator;
 Language
English
 Cited by
1.
Convolution properties for meromorphically multivalent functions involving generalized Bessel functions, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017  crossref(new windwow)
2.
On confluent hypergeometric functions and generalized Bessel functions, Analysis Mathematica, 2017  crossref(new windwow)
 References
1.
S. Andras and A. Baricz, Monotonicity property of generalized and normalized Bessel functions of complex order, Complex Var. Elliptic Equ. 54 (2009), no. 7, 689-696. crossref(new window)

2.
A. Baricz, Applications of the admissible functions method for some differential equations, Pure Math. Appl. 13 (2002), no. 4, 433-440.

3.
A. Baricz, Bessel transforms and Hardy space of generalized Bessel functions, Mathematica 48(71) (2006), no. 2, 127-136.

4.
A. Baricz, Generalized Bessel functions of the first kind, Ph. D. Thesis, Babes-Bolyai University, Cluj-Napoca, 2008.

5.
A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), no. 1-2, 155-178.

6.
A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010.

7.
A. Baricz, E. Deniz, M. Caglar, and H. Orhan, Differential subordinations involving generalized Bessel functions, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 3, 1255-1280. crossref(new window)

8.
A. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, integral Transforms Spec. Funct. 21 (2010), no. 9, 641-651. crossref(new window)

9.
S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), no. 3, 297-309. crossref(new window)

10.
S. S. Miller and P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc. 110 (1990), no. 2, 333-342. crossref(new window)

11.
S. S. Miller and P. T. Mocanu, Differential subordinations, vol. 225 of Monographs and textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 2000.

12.
S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48 (2003), no. 10, 815-826. crossref(new window)

13.
S. R.Mondal and A. Swaminathan, Geometric properties of generalized Bessel functions, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 179-194.

14.
S. Ponnusamy and F. Ronning, Geometric properties for convolutions of hypergeometric functions and functions with the derivative in a halfplane, integral Transform. Spec. Funct. 8 (1999), no. 1-2, 121-138.

15.
S. Ponnusamy, M. Vuorinen, Univalence and convexity properties for confluent hyper-geometric functions, Complex Var. Theory Appl. 36 (1998), no. 1, 73-97. crossref(new window)

16.
S. Ponnusamy, M. Vuorinen, Univalence and convexity properties for Gaussian hypergeometric functions, Rocky Mountain J. Math. 31 (2001), no. 1, 327-353. crossref(new window)