JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME CURIOSITIES OF THE ALGEBRA OF BOUNDED DIRICHLET SERIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME CURIOSITIES OF THE ALGEBRA OF BOUNDED DIRICHLET SERIES
Mortini, Raymond; Sasane, Amol;
  PDF(new window)
 Abstract
It is shown that the algebra of bounded Dirichlet series is not a coherent ring, and has infinite Bass stable rank. As corollaries of the latter result, it is derived that has infinite topological stable rank and infinite Krull dimension.
 Keywords
coherent ring;Hardy algebra;Dirichlet series;Bass stable rank;topological stable rank;Krull dimension;K-theory;
 Language
English
 Cited by
 References
1.
E. Amar, Non coherence de certains anneaux de fonctions holomorphes, Illinois J. Math. 25 (1981), no. 1, 68-73.

2.
H. Bass, Algebraic K-Theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968.

3.
H. Bohr, Uber die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletscher Reihen ${\sum}a_n/n^s$, Nachr. Ges. Wiss. Gottingen Math. Phys. 1913 (1913), 441-488.

4.
S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. crossref(new window)

5.
S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.

6.
S. Glaz, Commutative coherent rings: historical perspective and current developments, Nieuw Arch. Wisk. (4) 10 (1992), no. 1-2, 37-56.

7.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed. Oxford, at the Clarendon Press, 1954.

8.
H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in $L^2$(0, 1), Duke Math. J. 86 (1997), no. 1, 1-37. crossref(new window)

9.
R. C. Heitmann, Generating ideals in Prufer domains, Pacific J. Math. 62 (1976), no. 1, 117-126. crossref(new window)

10.
B. Maurizi and H. Queffelec, Some remarks on the algebra of bounded Dirichlet series, J. Fourier Anal. Appl. 16 (2010), no. 5, 676-692. crossref(new window)

11.
W. S. McVoy and L. A. Rubel, Coherence of some rings of functions, J. Funct. Anal. 21 (1976), no. 1, 76-87. crossref(new window)

12.
R. Mortini, An example of a subalgebra of $H^{\infty}$ on the unit disk whose stable rank is not finite, Studia Math. 103 (1992), no. 3, 275-281. crossref(new window)

13.
M. von Renteln, Primideale in der topologischen Algebra $H^{\infty}{\beta}$, Math. Z. 157 (1977), no. 1, 79-82. crossref(new window)

14.
M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301-333.

15.
K. Seip, Interpolation by Dirichlet series in $H^{\infty}$, In Linear and Complex Analysis, 153-164, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009.

16.
D. Suarez, Trivial Gleason parts and the topological stable rank of $H^{\infty}$, Amer. J. Math. 118 (1996), no. 4, 879-904. crossref(new window)

17.
S. Treil, The stable rank of the algebra $H^{\infty}$ equals 1, J. Funct. Anal. 109 (1992), no. 1, 130-154. crossref(new window)