JOURNAL BROWSE
Search
Advanced SearchSearch Tips
JACOBI SPECTRAL GALERKIN METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNEL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
JACOBI SPECTRAL GALERKIN METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNEL
Yang, Yin;
  PDF(new window)
 Abstract
We propose and analyze spectral and pseudo-spectral Jacobi-Galerkin approaches for weakly singular Volterra integral equations (VIEs). We provide a rigorous error analysis for spectral and pseudo-spectral Jacobi-Galerkin methods, which show that the errors of the approximate solution decay exponentially in norm and weighted -norm. The numerical examples are given to illustrate the theoretical results.
 Keywords
spectral Galerkin methods;Jacobi polynomial;Volterra integral equations with weakly singular kernels;
 Language
English
 Cited by
1.
Spectral Collocation Methods for Nonlinear Volterra Integro-Differential Equations with Weakly Singular Kernels, Bulletin of the Malaysian Mathematical Sciences Society, 2017  crossref(new windwow)
2.
Numerical solutions for solving time fractional Fokker–Planck equations based on spectral collocation methods, Journal of Computational and Applied Mathematics, 2017  crossref(new windwow)
3.
Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Computers & Mathematics with Applications, 2017, 73, 6, 1218  crossref(new windwow)
 References
1.
P. Baratella and A. Orsi, A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math. 163 (2004), no. 2, 401-418. crossref(new window)

2.
C. Canuto, M. Y. Hussaini, and A. Quarteroni, Spectral Methods, Fundamentals in single domains, Sci. Comput., Springer-Verlag, Berlin, 2006

3.
Y. Chen and T. Tang, Spectral methods for weakly singular Volterra integral equations with smooth solutions, J. Comput. Appl. Math. 233 (2009), no. 4, 938-950. crossref(new window)

4.
Y. Chen and T. Tang, Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with a weakly singular kernel, Math. Comp. 79 (2010), no. 269, 147-167. crossref(new window)

5.
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Appl. Math. Sci., Springer-Verlag, Heidelberg, 2nd Edition, 1998.

6.
J. Douglas, T. Dupont, and L. Wahlbin, The stability in $L^q$ of the $L^2$-projection into finite element function spaces, Numer. Math. 23 (1974), no. 3, 193-197. crossref(new window)

7.
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981.

8.
A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific, New York, 2003.

9.
G. Mastroianni and D. Occorsto, Optimal systems of nodes for Lagrange interpolation on bounded intervals: a survey, J. Comput. Appl. Math. 134 (2001), no. 1-2, 325-341. crossref(new window)

10.
P. Nevai, Mean convergence of Lagrange interpolation: III, Trans. Amer. Math. Soc. 282 (1984), no. 2, 669-698. crossref(new window)

11.
D. L. Ragozin, Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc. 150 (1970), 41-53. crossref(new window)

12.
D. L. Ragozin, Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math. Soc. 162 (1971), 157-170.

13.
S. Jie, T. Tao, and L. Wang, Spectral methods. Algorithms, analysis and applications, Springer Ser. Comput. Math., 41. Springer, Heidelberg, 2011.

14.
T. Tang, X. Xu, and J. Cheng. On Spectral methods for Volterra integral equation and the convergence analysis, J. Comput. Math. 26 (2008), no. 6, 825-837.

15.
X. Tao, Z. Xie, and X. Zhou, Spectral Petrov-Galerkin methods for the second kind Volterra type integro-differential equations, Numer. Math. Theory Methods Appl. 4 (2011), no. 2, 216-236.

16.
Z. Wan, Y. Chen, and Y. Huang, Legendre spectral Galerkin method for second-kind Volterra integral equations, Front. Math. China 4 (2009), no. 1, 181-193. crossref(new window)

17.
Y. Wei and Y. Chen, Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions, Adv. Appl. Math. Mech. 4 (2012), no. 1, 1-20. crossref(new window)

18.
Z. Xie and X. Li, and T. Tang, Convergence analysis of spectral Galerkin methods for Volterra type integral equations, J. Sci. Comput. 53 (2012), no. 2, 414-434. crossref(new window)

19.
Y. Yang, Y. Chen, and Y. Huang, Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 3, 673-690.

20.
Y. Yang, Y. Chen, and Y. Huang, Convergence analysis of Legendre-collocation methods for nonlinear Volterra type integro equations, Adv. Appl. Math. Mech. 7 (2015), no. 1, 74-88. crossref(new window)