JOURNAL BROWSE
Search
Advanced SearchSearch Tips
VALUE DISTRIBUTION OF SOME q-DIFFERENCE POLYNOMIALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
VALUE DISTRIBUTION OF SOME q-DIFFERENCE POLYNOMIALS
Xu, Na; Zhong, Chun-Ping;
  PDF(new window)
 Abstract
For a transcendental entire function f(z) with zero order, the purpose of this article is to study the value distributions of q-difference polynomial and . The property of entire solution of a certain q-difference equation is also considered.
 Keywords
q-difference polynomial;value distribution;entire function;
 Language
English
 Cited by
 References
1.
R. B. Ash, Complex Variables, Academic Press, New York-London, 1971.

2.
D. C. Barnett, R. G. Halburd, R. J. Korhonen, and W. Morgan, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A. 137 (2007), no. 3, 457-474.

3.
Z. X. Chen, Value distribution of products of meromorphic functions and their differences, Taiwanese J. Math. 15 (2011), no. 4, 1411-1421.

4.
Z. X. Chen, Zeros of entire solutions to complex linear difference equations, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 3, 1141-1148.

5.
Z. X. Chen, Z. B. Huang, and X. M. Zheng, On properties of difference polynomials, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 2, 627-633.

6.
Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic f(z + $\eta$) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. crossref(new window)

7.
R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 463-478.

8.
R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477-487. crossref(new window)

9.
W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. 70 (1959), 9-42. crossref(new window)

10.
W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

11.
I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.

12.
I. Laine and C. C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148-151. crossref(new window)

13.
K. Liu, X. L. Liu, and T. B. Cao, Uniqueness and zeros of q-shift difference polynomials, Proc. Indian Acad. Sci. Math. Sci. 121 (2011), no. 3, 301-310. crossref(new window)

14.
K. Liu and X. G. Qi, Meromorphic solutions of q-shift difference equations, Ann. Polon. Math. 101 (2011), no. 3, 215-225. crossref(new window)

15.
K. Liu and L. Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (2009), no. 3, 270-278. crossref(new window)

16.
J. F. Xu and X. B. Zhang, The zeros of q-difference polynomials of meromorphic functions, Adv. Difference Equ. 2012 (2012), 200, 10 pp. crossref(new window)

17.
L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.

18.
H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press 1995.

19.
J. L. Zhang and R. J. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. crossref(new window)