JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SHARED VALUES AND BOREL EXCEPTIONAL VALUES FOR HIGH ORDER DIFFERENCE OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SHARED VALUES AND BOREL EXCEPTIONAL VALUES FOR HIGH ORDER DIFFERENCE OPERATORS
Liao, Liangwen; Zhang, Jie;
  PDF(new window)
 Abstract
In this paper, we investigate the high order difference counterpart of conjecture, and we prove one result that for a transcendental entire function f of finite order, which has a Borel exceptional function a whose order is less than one, if and f share one small function d other than a CM, then f must be form of $f(z)
 Keywords
uniqueness;entire function;difference equation;order;
 Language
English
 Cited by
 References
1.
R. Bruck, On entire functions which share one value CM with their first derivative, Results Math. 30 (1996), no. 1-2, 21-24. crossref(new window)

2.
W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 133-147. crossref(new window)

3.
C. X. Chen and Z. X. Chen, Entire functions and their high order differences, Taiwanese J. Math. 18 (2014), no. 3, 711-729. crossref(new window)

4.
Z. X. Chen and K. H. Shon, On conjecture of R. Bruck, concerning the entire function sharing one value CM with its derivative, Taiwanese J. Math. 8 (2004), no. 2, 235-244. crossref(new window)

5.
Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of f(z+$\eta$) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105-129. crossref(new window)

6.
Y. M. Chiang and S. J. Feng, On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3767-3791. crossref(new window)

7.
W. K. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv. 34 (1960), 75-84. crossref(new window)

8.
W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

9.
J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363. crossref(new window)

10.
G. Gundersen, Correction to meromorphic functions that share four values, Trans. Amer. Math. Soc. 304 (1987), no. 2, 847-850.

11.
G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429. crossref(new window)

12.
G. Gundersen and L. Z. Yang, Entire functions that share one values with one or two of their derivatives, J. Math. Anal. Appl. 223 (1998), no. 1, 88-95. crossref(new window)

13.
E. Mues, Meromorphic functions sharing four valus, Complex Variables Theory Appl. 12 (1989), no. 1-4, 167-179.

14.
C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, Second Printed in 2006.

15.
L. Yang, Value Distribution Theory, Springer-Verlag & Science Press, Berlin, 1993.

16.
J. Zhang, H. Y. Kang, and L. W. Liao, Entire functions sharing a small entire function with their difference operators, Bull. Iran. Math. Soc. accepted.