JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON π𝔉-EMBEDDED SUBGROUPS OF FINITE GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON π𝔉-EMBEDDED SUBGROUPS OF FINITE GROUPS
Guo, Wenbin; Yu, Haifeng; Zhang, Li;
  PDF(new window)
 Abstract
A chief factor H/K of G is called F-central in G provided . A normal subgroup N of G is said to be -hypercentral in G if either N
 Keywords
-hypercenter;-embedded subgroup;Sylow subgroup;n-maximal subgroup;
 Language
English
 Cited by
 References
1.
A. Ballester-Bolinches, L. M. Ezquerro, and A. N. Skiba, On subgroups of hypercentral type of finite groups, Israel J. Math. 199 (2014), no. 1, 259-265. crossref(new window)

2.
X. Chen and W. Guo, On weakly S-embedded and weakly $\tau$-embedded subgroups, Sib. Math. J. 54 (2013), no. 5, 931-945. crossref(new window)

3.
X. Chen and W. Guo, On the ${\pi}{\Im}$-norm and the ${\eta}-{\Im}$-norm of a finite group, J. Algebra 405 (2014), 213-231. crossref(new window)

4.
K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.

5.
L. M. Ezquerro and X. Soler-Escriva, Some permutability properties related to $\Im$-hypercentrally embedded subgroups of finite groups, J. Algebra 264 (2003), no. 1, 279-295. crossref(new window)

6.
X. Feng and W. Guo, On Fh-normal subgroups of finite groups, Front. Math. China 5 (2010), no. 4, 653-664. crossref(new window)

7.
W. Guo, The Theory of Classes of Groups, Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing, 2000.

8.
W. Guo, On $\Im$-supplemented subgroups of finite groups, Manuscripta Math. 127 (2008), no. 2, 139-150. crossref(new window)

9.
W. Guo and S. Chen, Weakly c-permutable subgroups of finite groups, J. Algebra 324 (2010), no. 9, 2369-2381. crossref(new window)

10.
W. Guo and A. N. Skiba, On factorizations of finite groups with $\Im$-hypercentral intersections of the factors, J. Group Theory 14 (2011), no. 5, 695-708.

11.
W. Guo and A. N. Skiba, On the intersection of the F-maximal subgroups and the generalized $\Im$-hypercentre of a finite group, J. Algebra 366 (2012), 112-125. crossref(new window)

12.
W. Guo, F. Xie, and B. Li, Some open questions in the theory of generalized permutable subgroups, Sci. China Math. 52 (2009), no. 10, 2132-2144. crossref(new window)

13.
X. Guo and K. P. Shum, On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups, Arch. Math. (Basel) 80 (2003), no. 6, 561-569. crossref(new window)

14.
J. Huang, On ${\Im}_s$-quasinormal subgroups of finite groups, Comm. Algebra 38 (2010), no. 11, 4063-4076. crossref(new window)

15.
B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

16.
D. J. S. Robinson, A Course in the Theorey of Groups, Springer-Verlag, New York, 1982.

17.
P. Schmid, Subgroups permutable [commuting] with all Sylow subgroups, J. Algebra 207 (1998), no. 1, 285-293. crossref(new window)

18.
L. A. Shemetkov and A. N. Skiba, On the ${\chi}{\Phi}$-hypercentre of finite groups, J. Algebra 322 (2009), no. 6, 2106-2117. crossref(new window)

19.
A. N. Skiba, On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups, J. Group Theory 13 (2010), no. 6, 841-850.

20.
A. N. Skiba, On the ${\Im}$-hypercentre and the intersection of all F-maximal subgroups of a finite group, J. Pure Appl. Algebra 216 (2012), no. 4, 789-799. crossref(new window)

21.
S. Srinivasan, Two sufficient conditions for supersolvability of finite groups, Israel J. Math. 35 (1980), no. 3, 210-214. crossref(new window)

22.
Y.Wang, c-normality of groups and its properties, J. Algebra 180 (1996), no. 3, 945-965.

23.
X. Yi, L. Miao, H. Zhang, and W. Guo, Finite groups with some F-supplemented subgroups, J. Algebra Appl. 9 (2010), no. 5, 669-685. crossref(new window)