JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON DIFFERENCE QUOTIENTS OF CHEBYSHEV POLYNOMIALS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON DIFFERENCE QUOTIENTS OF CHEBYSHEV POLYNOMIALS
Kim, Seon-Hong; Lee, Jung Hee;
  PDF(new window)
 Abstract
In this paper, we investigate analytic and algebraic properties, and derive some identities satisfied by difference quotients of Chebyshev polynomials of the first kind.
 Keywords
difference quotients;Chebyshev polynomials;
 Language
English
 Cited by
 References
1.
S. Barnett, A note on the Bezoutian matrix, SIAM J. Appl. Math. 22 (1972), 84-86 crossref(new window)

2.
J. W. S. Cassels, Factorization of polynomials in several variables, in Proc. 15th Scandinavian Congress Oslo, 1968, 1-17, Springer Lecture Notes in Mathematics, 118, 1970.

3.
A. J. Engler and S. K. Khanduja, On irreducible factors of the polynomial f(x) - g(x), Internat. J. Math. 21 (2010), no. 4, 407-418. crossref(new window)

4.
I. M. Gel'fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhauser, Boston, 1994.

5.
P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, 2nd ed., Academic Press, New York, 1985.

6.
J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC, Boca Raton, 2003.

7.
M. O. Rayes, V. Trevisan, and P. S. Wang, Factorization of Chebyshev Polynomials, Tech. Rep. ICM-199802-0001, Kent State University, 1998.

8.
T. J. Rivlin, Chebyshev Polynomials, From approximation theory to algebra and number theory. Pure and Applied Mathematics (New York). John Wiley and Sons, 1990.

9.
Z. H. Yang and B. F. Cui, On the Bezoutian matrix for Chebyshev polynomials, Appl. Math. Comput. 219 (2012), no. 3, 1183-1192.