JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A COMPOSITE FUNCTIONAL EQUATION RELATED TO THE GOLAB-SCHINZEL EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A COMPOSITE FUNCTIONAL EQUATION RELATED TO THE GOLAB-SCHINZEL EQUATION
Gordji, Madjid Eshaghi; Rassias, Themistocles M.; Tial, Mohamed; Zeglami, Driss;
  PDF(new window)
 Abstract
Let X be a vector space over a field K of real or complex numbers and . We prove the superstability of the following generalized Golab-Schinzel type equation $f(x_1+{\limits\sum_{i
 Keywords
Hyers-Ulam stability;Golab-Schinzel equation;superstability;
 Language
English
 Cited by
1.
Stability problem for the composite type functional equations, Expositiones Mathematicae, 2017  crossref(new windwow)
 References
1.
J. Aczel and S. Golab, Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10. crossref(new window)

2.
J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411-416. crossref(new window)

3.
J. A. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation f(x + y) =f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), no. 2, 242-246.

4.
K. Baron, On the continuous solutions of the Golab-Schinzel equation, Aequationes Math. 38 (1989), no. 2-3, 155-162. crossref(new window)

5.
N. Brillouet-Belluot, On some functional equations of Golab-Schinzel type, Aequationes Math. 42 (1991), no. 2-3, 239-270. crossref(new window)

6.
N. Brillouet-Belluot, J. Brzdek, and K. Cieplinski, On some recent developments in Ulam's type stability, Abstr. Appl. Anal. 2012 (2012), Art. ID 716936, 41 pp.

7.
N. Brillouet-Belluot and J. Dhombres, Equations fonctionnelles et recherche de sous-groupes, Aequationes Math. 31 (1986), no. 2-3, 253-293. crossref(new window)

8.
J. Brzdek, Subgroups of the group Zn and a generalization of the Golab-Schinzel functional equation, Aequationes Math. 43 (1992), no. 1, 59-71. crossref(new window)

9.
J. Brzdek, Some remarks on solutions of the functional equation $f(x+f(x)^ny)=tf(x)f(y)$, Publ. Math. Debrecen 43 (1993), no. 1-2, 147-160.

10.
J. Brzdek, Golab-Schinzel equation and its generalizations, Aequationes Math. 70 (2005), no. 1-2, 14-24. crossref(new window)

11.
J. Brzdek, Stability of the generalized Golab-Schinzel equation, Acta Math. Hungar. 113 (2006), 115-126.

12.
J. Brzdek, On the quotient stability of a family of functional equations, Nonlinear Anal. 71 (2009), no. 10, 4396-4404. crossref(new window)

13.
J. Brzdek, On stability of a family of functional equations, Acta Math. Hungar. 128 (2010), no. 1-2, 139-149. crossref(new window)

14.
J. Brzdek and K. Cieplinski, Hyperstability and superstability, Abstr. Appl. Anal. 2013 (2013), Article ID 401756, 13 pages.

15.
A. Chahbi, On the superstability of the generalized Golab-Schinzel equation, Internat. J. Math. Anal. 6 (2012), no. 54, 2677-2682.

16.
A. Charifi, B. Bouikhalene, S. Kabbaj, and J. M. Rassias, On the stability of Pexiderized Golab-Schinzel equation, Comput. Math. Appl. 59 (2010), no. 9, 3193-3202. crossref(new window)

17.
J. Chudziak, Approximate solutions of the Golab-Schinzel equation, J. Approx. Theory 136 (2005), no. 1, 21-25. crossref(new window)

18.
J. Chudziak, Stability of the generalized Golab-Schinzel equation, Acta Math. Hungar. 113 (2006), no. 1-2, 133-144. crossref(new window)

19.
J. Chudziak, Approximate solutions of the generalized Golab-Schinzel equation, J. Inequal. Appl. 2006 (2006), Article ID 89402, 8 pp.

20.
J. Chudziak, Stability problem for the Golab-Schinzel type functional equations, J. Math. Anal. Appl. 339 (2008), no. 1, 454-460. crossref(new window)

21.
J. Chudziak and J. Tabor, On the stability of the Golab-Schinzel functional equation, J. Math. Anal. Appl. 302 (2005), no. 1, 196-200. crossref(new window)

22.
R. Ger and P. Semrl, The stability of the exponential equation, Proc. Amer. Math. Soc. 124 (1996), no. 3, 779-787. crossref(new window)

23.
S. Golab and A. Schinzel, Sur l'equation fonctionnelle f(x + yf(x)) = f(x)f(y), Publ. Math. Debrecen 6 (1959), 113-125.

24.
D. H. Hyers, G. I. Isac, and Th. M. Rassias, Stability of Functional Equations in Sev-eral Variables, Progress in Nonlinear Differential Equations and their Applications 34, Birkhauser, Boston, Inc., Boston, MA, 1998.

25.
E. Jablonska, On solutions of some generalizations of the Golab-Schinzel equation, In: Functional Equations in Mathematical Analysis, pp. 509-521. Springer Optimization and its Applications vol. 52. Springer 2012.

26.
E. Jablonska, On continuous solutions of an equation of the Golab-Schinzel type, Bull. Aust. Math. Soc. 87 (2013), no. 1, 10-17. crossref(new window)

27.
E. Jablonska, On locally bounded above solutions of an equation of the Golab-Schinzel type, Aequationes Math. 87 (2014), no. 1-2, 125-133. crossref(new window)

28.
S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Anal-ysis, Springer, New York, 2011.

29.
Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. crossref(new window)

30.
A. Roukbi, D. Zeglami, and S. Kabbaj, Hyers-Ulam stability of Wilson's functional equation, Math. Sci. Adv. Appl. 22 (2013), 19-26.

31.
D. Zeglami, The superstability of a variant of Wilson's functional equations on an ar-bitrary group, Afr. Mat. 26 (2015), 609-617. crossref(new window)

32.
D. Zeglami and S. Kabbaj, On the supesrtability of trigonometric type functional equa-tions, British J. Math. & Comput. Sci. 4 (2014), no. 8, 1146-1155. crossref(new window)

33.
D. Zeglami, S. Kabbaj, A. Charifi, and A. Roukbi, ${\mu}$-Trigonometric functional equations and Hyers-Ulam stability problem in hypergroups, Functional Equations in Mathematical Analysis, pp. 337-358, Springer, New York, 2012.

34.
D. Zeglami, A. Roukbi, and S. Kabbaj, Hyers-Ulam stability of generalized Wilson's and d'Alembert's functional equations, Afr. Mat. 26 (2015), 215-223. crossref(new window)