JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BUBBLE STABILIZATION OF CHEBYSHEV-LEGENDRE HIGH-ORDER ELEMENT METHODS FOR THE ADVECTION-DIFFUSION EQUATION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BUBBLE STABILIZATION OF CHEBYSHEV-LEGENDRE HIGH-ORDER ELEMENT METHODS FOR THE ADVECTION-DIFFUSION EQUATION
Kim, Philsu; Kim, Sang Dong; Lee, Yong Hun;
  PDF(new window)
 Abstract
The bubble stabilization technique of Chebyshev-Legendre high-order element methods for one dimensional advection-diffusion equation is analyzed for the proposed scheme by Canuto and Puppo in [8]. We also analyze the finite element lower-order preconditioner for the proposed stabilized linear system. Further, the numerical results are provided to support the developed theories for the convergence and preconditioning.
 Keywords
Chebyshev-Galerkin spectral method;bubble-stabilization;advection-diffusion equation;lower-order preconditioner;
 Language
English
 Cited by
 References
1.
C. Baiocchi, F. Brezzi, and L. P. Franca, Virtual bubbles and Galerkin-least-squares type methods, Comput. Methods Appl. Mech. Engrg. 105 (1993), no. 1, 125-142. crossref(new window)

2.
F. Brezzi, M.-O. Bristeau, L. P. Franca, M. Mallet, and G. Roge, A relationship be-tween stabilized finite element methods and the Galerkin Method with bubble functions, Comput. Methods Appl. Mech. Engrg. 96 (1992), no. 1, 117-130. crossref(new window)

3.
A. N. T. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convected dominated flows with a particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), no. 1-3, 199-259. crossref(new window)

4.
C. Canuto, Spectral methods and a maximum principle, Math. Comp. 51 (1988), no. 184, 615-629. crossref(new window)

5.
C. Canuto, Stabilization of spectral methods by finite element bubble functions, Comput. Methods Appl. Mech. Engrg. 116 (1994), no. 1-4, 13-26. crossref(new window)

6.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods. Funda-mentals in Single Domains, Springer-Verlag, Berlin, 2006.

7.
C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods. Evolution to Complex Geometries and Applications to Flid Dynamics, Springer-Verlag, Berlin, 2007.

8.
C. Canuto and G. Puppo, Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, Comput. Methods Appl. Mech. Engrg. 118 (1994), no. 3-4, 239-263. crossref(new window)

9.
S. D. Kim, Piecewise bilinear preconditioning of high-order finite element methods, Electron. Trans. Numer. Anal. 26 (2007), 228-242.

10.
S. Kim and S. D. Kim, Preconditioning on high-order element methods using Chebyshev-Gauss-Lobatto nodes, Appl. Numer. Math. 59 (2009), no. 2, 316-333. crossref(new window)

11.
S. D. Kim and S. Parter, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations, SIAM J. Numer. Anal. 33 (1996), no. 6, 2375-2400. crossref(new window)

12.
J. H. Lee, Bubble Stabilization of Chebyshev Spectral Method for Advection-Diffusion Equation, Ph.D. Thesis, KAIST, Korea, 1988.

13.
H. Ma, Chebyshev-Legendre spectral viscosity method for nonlinear conservation laws, SIAM J. Numer. Anal. 35 (1998), no. 3, 869-892. crossref(new window)