JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME CHARACTERIZATIONS OF CANAL SURFACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME CHARACTERIZATIONS OF CANAL SURFACES
Kim, Young Ho; Liu, Huili; Qian, Jinhua;
  PDF(new window)
 Abstract
This work considers a particular type of swept surface named canal surfaces in Euclidean 3-space. For such a kind of surfaces, some interesting and important relations about the Gaussian curvature, the mean curvature and the second Gaussian curvature are found. Based on these relations, some canal surfaces are characterized.
 Keywords
canal surface;Gaussian curvature;mean curvature;second Gaussian curvature;Weingarten surface;linear Weingarten surface;
 Language
English
 Cited by
 References
1.
J. A. Galvez, A. Martinez, and F. Milan, Linear Weingarten Surfaces in $R^3$, Monatsh. Math. 138 (2003), no. 2, 133-144. crossref(new window)

2.
S. Haesen, S. Verpoort, and L. Verstraelen, The mean curvature of the second funda-mental form, Houston J. Math. 34 (2008), no. 3, 703-719.

3.
Y. H. Kim and D. W. Yoon, On non-developable ruled surface in Lorentz-Minkowski 3-spaces, Taiwanese J. Math. 11 (2007), no. 1, 197-214. crossref(new window)

4.
S. N. Krivoshapko and C. A. Bock Hyeng, Classification of cyclic surfaces and geomet-rical research of canal surfaces, Int. J. Res. Rev. Appl. Sci. 12 (2012), no. 3, 360-374.

5.
R. Lopez, Linear Weingarten surfaces in Euclidean and hyperbolic space, Mat. Contemp. 35 (2008), 95-113.

6.
R. Lopez, Rotational linear Weingarten surfaces of hyperbolic type, Israel J. Math. 167 (2008), 283-302. crossref(new window)

7.
T. Maekawa, M. N. Patrikalakis, T. Sakkalis, and G. Yu, Analysis and applications of pipe surfaces, Comput. Aided Geom. Design 15 (1998), no. 5, 437-458. crossref(new window)

8.
A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, Second edition, Chapman and Hall/CRC, 2003.

9.
J. S. Ro and D. W. Yoon, Tubes of Weingarten types in a Euclidean 3-space, J. Chungcheong Math. Soc. 22 (2009), 360-366.

10.
S. Verpoort, The Geometry of the Second Fundamental Form: Curvature Properties and Variational Aspects, PhD. Thesis, Katholieke Universiteit Leuven, Belgium, 2008.

11.
Z. Q. Xu, R. Z. Feng, and J. G. Sun, Analytic and algebraic properties of canal surfaces, J. Comput. Appl. Math. 195 (2006), no. 1-2, 220-228. crossref(new window)