JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FINITE GROUPS WITH A CYCLIC NORM QUOTIENT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FINITE GROUPS WITH A CYCLIC NORM QUOTIENT
Wang, Junxin;
  PDF(new window)
 Abstract
The norm N(G) of a group G is the intersection of the normalizers of all the subgroups of G. In this paper, the structure of finite groups with a cyclic norm quotient is determined. As an application of the result, an interesting characteristic of cyclic groups is given, which asserts that a finite group G is cyclic if and only if Aut(G)/P(G) is cyclic, where P(G) is the power automorphism group of G.
 Keywords
norm;cyclic group;power automorphism;
 Language
English
 Cited by
 References
1.
R. Baer, Der Kern, eine charakteristische Untergruppe, Compositio Math. 1 (1934), 254-283.

2.
R. Baer, Gruppen mit Hamilton Schem Kern, Compositio Math. 2 (1935), 241-246.

3.
R. Baer, Zentrum und Kern von Gruppen mit Elementen unendlicher Ordnung, Com-positio Math. 2 (1935), 247-249.

4.
R. Baer, Norm and hypernorm, Publ. Math. Debrecen 4 (1956), 347-350.

5.
C. D. H. Cooper, Power automorphisms of a group, Math. Z. 107 (1968), 335-356. crossref(new window)

6.
B. Huppert, Endliche Gruppen I, Springer-Verlag, New York, 1967.

7.
H. Kurzweil, Endliche Gruppen, Springer-Verlag, Berlin and New York, 1977.

8.
D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.

9.
E. Schenkman, On the norm of a group, Illinois J. Math. 4 (1960), 150-152.

10.
J. X. Wang and X. Y. Guo, On the norm of finite groups, Algebra Colloq. 14 (2007), no. 4, 605-612. crossref(new window)

11.
J. X. Wang and X. Y. Guo, Finite groups with its power automorphism groups having small indices, Acta Math. Sin. (Engl. Ser.) 25 (2009), no. 7, 1097-1108. crossref(new window)

12.
J. X. Wang and X. Y. Guo, Finite groups with a pre-fixed-point-free power automorphism, Comm. Algebra 41 (2013), no. 9, 3241-3251. crossref(new window)