JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HELICOIDAL MINIMAL SURFACES IN A CONFORMALLY FLAT 3-SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HELICOIDAL MINIMAL SURFACES IN A CONFORMALLY FLAT 3-SPACE
Araujo, Kellcio Oliveira; Cui, Ningwei; Pina, Romildo da Silva;
  PDF(new window)
 Abstract
In this work, we introduce the complete Riemannian manifold which is a three-dimensional real vector space endowed with a conformally flat metric that is a solution of the Einstein equation. We obtain a second order nonlinear ordinary differential equation that characterizes the helicoidal minimal surfaces in . We show that the helicoid is a complete minimal surface in . Moreover we obtain a local solution of this differential equation which is a two-parameter family of functions explicitly given by an integral and defined on an open interval. Consequently, we show that the helicoidal motion applied on the curve defined from gives a two-parameter family of helicoidal minimal surfaces in .
 Keywords
elicoidal minimal surfaces;conformally flat space;
 Language
English
 Cited by
1.
On Helicoidal Surfaces in a Conformally Flat 3-Space, Mediterranean Journal of Mathematics, 2017, 14, 4  crossref(new windwow)
 References
1.
C. Baikoussis and T. Koufogiorgos, Helicoidal surfaces with prescribed mean or gaussian curvature, J. Geom. 63 (1998), no. 1-2, 25-29. crossref(new window)

2.
Chr. C. Beneki, G. Kaimakamis, and B. J. Papantoniou, Helicoidal surfaces in three-dimensional Minkowski space, J. Math. Anal. Appl. 275 (2002), no. 2, 586-614. crossref(new window)

3.
M. P. do Carmo and M. Dajczer, Helicoidal surfaces with constant mean curvature, Tohoku Math. J. 34 (1982), no. 3, 425-435. crossref(new window)

4.
A. V. Corro, R. Pina, and M. Souza, Surfaces of rotation with constant extrinsic cur-vature in a conformally flat 3-space, Results. Math. 60 (2011), no. 1-4, 225-234. crossref(new window)

5.
N. Cui and Y.-B. Shen, Minimal rotational hypersurfaces in Minkowski (${\alpha},\;{\beta}$)-space, Geom. Dedicata 151 (2011), 27-39. crossref(new window)

6.
B. Daniel, W. H. Meeks, and H. Rosenberg, Half-space theorems for minimal surfaces in $Nil_3$and $Sol_3$, J. Differential Geom. 88 (2011), no. 1, 41-59. crossref(new window)

7.
D. Hoffman and B.White, Axial minimal surfaces in $S^2{\times}R$ are helicoidal, J. Differential Geom. 87 (2011), no. 3, 515-523. crossref(new window)

8.
R. Pina and K. Tenenblat, On solutions of the Ricci curvature equation and the Einstein equation, Israel J. Math. 171 (2009), 61-76. crossref(new window)

9.
J. Pyo, New complete embedded minimal surfaces in ${\mathbb{H}}^2{\times}{\mathbb{R}}$, Ann. Global Anal. Geom. 40 (2011), no. 2, 167-176. crossref(new window)

10.
R. M. da Silva and K. Tenenblat, Minimal surfaces in a cylindrical region of ${\mathbb{R}}^3$ with a Randers metric, Houston J. Math. 37 (2011), no. 3, 745-771.

11.
M. A. Souza and K. Tenenblat, Minimal surfaces of rotation in Finsler space with a Randers metric, Math. Ann. 325 (2003), no. 4, 625-642. crossref(new window)

12.
H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions Of Einstein Field Equations, Cambridge University Press, Cambridge, 2003.

13.
S. T. Yau, Seminar on Differential Geometry, Princeton University Press, Princeton, NJ, 1982.