JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A FINITE PRESENTATION FOR THE TWIST SUBGROUP OF THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A FINITE PRESENTATION FOR THE TWIST SUBGROUP OF THE MAPPING CLASS GROUP OF A NONORIENTABLE SURFACE
Stukow, Michal;
  PDF(new window)
 Abstract
Let denote the nonorientable surface of genus g with s boundary components. Recently Paris and Szepietowski [12] obtained an explicit finite presentation for the mapping class group of the surface , where and g + s > 3. Following this work, we obtain a finite presentation for the subgroup of generated by Dehn twists.
 Keywords
mapping class group;nonorientable surface;twist subgroup;presentation;
 Language
English
 Cited by
 References
1.
J. S. Birman, Automorphisms of the fundamental group of a closed, orientable 2-manifold, Proc. Amer. Math. Soc. 21 (1969), no. 2, 351-354.

2.
D. R. J. Chillingworth, A finite set of generators for the homeotopy group of a non-orientable surface, Math. Proc. Cambridge Philos. Soc. 65 (1969), 409-430. crossref(new window)

3.
S. Gervais, A finite presentation of the mapping class group of a punctured surface, Topology 40 (2001), no. 4, 703-725. crossref(new window)

4.
S. P. Humphries, Generators for the mapping class group, In Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), pp. 44-47, Lecture Notes in Math., 722, Springer, Berlin, 1979.

5.
D. L. Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979), no. 1, 119-125. crossref(new window)

6.
M. Korkmaz, Mapping class groups of nonorientable surfaces, Geom. Dedicata 89 (2002), 109-133.

7.
C. Labruere and L. Paris, Presentations for the punctured mapping class groups in terms of Artin groups, Algebr. Geom. Topol. 1 (2001), 73-114. crossref(new window)

8.
W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. 76 (1962), 531-540. crossref(new window)

9.
W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Math. Proc. Cambridge Philos. Soc. 59 (1963), 307-317. crossref(new window)

10.
W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Math. Proc. Cambridge Philos. Soc. 60 (1964), 769-778. crossref(new window)

11.
M. Matsumoto, A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000), no. 3, 401-418. crossref(new window)

12.
L. Paris and B. Szepietowski, A presentation for the mapping class group of a nonori-entable surface, arXiv:1308.5856v1 [math.GT], 2013.

13.
M. Stukow, The twist subgroup of the mapping class group of a nonorientable surface, Osaka J. Math. 46 (2009), no. 3, 717-738.

14.
M. Stukow, Generating mapping class groups of nonorientable surfaces with boundary, Adv. Geom. 10 (2010), no. 2, 249-273.

15.
M. Stukow, A finite presentation for the mapping class group of a nonorientable surface with Dehn twists and one crosscap slide as generators, J. Pure Appl. Algebra 218 (2014), no. 12, 2226-2239. crossref(new window)

16.
B. Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), no. 2-3, 157-174. crossref(new window)